Sabbir Mohammad Golam, Swanson Mamiko, Speth Robert C, Albensi Benedict C
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.
Alzo Biosciences Inc., San Diego, CA, United States.
Front Cell Dev Biol. 2023 May 24;11:1179252. doi: 10.3389/fcell.2023.1179252. eCollection 2023.
In a previous retrospective study using postmortem human brain tissues, we demonstrated that loss of Cholinergic Receptor Muscarinic 1 (CHRM1) in the temporal cortex of a subset of Alzheimer's patients was associated with poor survival, whereas similar loss in the hippocampus showed no such association. Mitochondrial dysfunction underlies Alzheimer's pathogenesis. Therefore, to investigate the mechanistic basis of our findings, we evaluated cortical mitochondrial phenotypes in Chrm1 knockout (Chrm1) mice. Cortical Chrm1 loss resulted in reduced respiration, reduced supramolecular assembly of respiratory protein complexes, and caused mitochondrial ultrastructural abnormalities. These mouse-based findings mechanistically linked cortical CHRM1 loss with poor survival of Alzheimer's patients. However, evaluation of the effect of Chrm1 loss on mouse hippocampal mitochondrial characteristics is necessary to fully understand our retrospective human tissue-based observations. This is the objective of this study. Enriched hippocampal and cortical mitochondrial fractions (EHMFs/ECMFs, respectively) derived from wild-type and Chrm1 mice were used to measure respiration by quantifying real-time oxygen consumption, supramolecular assembly of oxidative phosphorylation (OXPHOS)-associated proteins by blue native polyacrylamide gel electrophoresis, post-translational modifications (PTMs) by isoelectric focusing (IEF), and mitochondrial ultrastructure by electron microscopy. In contrast to our previous observations in Chrm1 ECMFs, EHMFs of Chrm1 mice significantly increased respiration with a concomitant increase in the supramolecular assembly of OXPHOS-associated proteins, specifically Atp5a and Uqcrc2, with no mitochondrial ultrastructural alterations. IEF of ECMFs and EHMFs from Chrm1 mice showed a decrease and an increase, respectively in a negatively charged (pH∼3) fraction of Atp5a relative to the wild-type mice, with a corresponding decrease or increase in the supramolecular assembly of Atp5a and respiration indicating a tissue-specific signaling effect. Our findings indicate that loss of Chrm1 in the cortex causes structural, and physiological alterations to mitochondria that compromise neuronal function, whereas Chrm1 loss in the hippocampus may benefit neuronal function by enhancing mitochondrial function. This brain region-specific differential effect of Chrm1 deletion on mitochondrial function supports our human brain region-based findings and Chrm1 mouse behavioral phenotypes. Furthermore, our study indicates that Chrm1-mediated brain region-specific differential PTMs of Atp5a may alter complex-V supramolecular assembly which in turn regulates mitochondrial structure-function.
在之前一项使用人类尸检脑组织的回顾性研究中,我们证明,一部分阿尔茨海默病患者颞叶皮质中胆碱能受体毒蕈碱型1(CHRM1)的缺失与生存率低有关,而海马体中类似的缺失则未显示出这种关联。线粒体功能障碍是阿尔茨海默病发病机制的基础。因此,为了研究我们这些发现的机制基础,我们评估了Chrm1基因敲除(Chrm1-/-)小鼠的皮质线粒体表型。皮质Chrm1缺失导致呼吸作用减弱、呼吸蛋白复合物的超分子组装减少,并引起线粒体超微结构异常。这些基于小鼠的发现从机制上把皮质CHRM1缺失与阿尔茨海默病患者的低生存率联系起来。然而,要全面理解我们基于人类组织的回顾性观察结果,评估Chrm1缺失对小鼠海马体线粒体特征的影响是必要的。这就是本研究的目的。分别从野生型和Chrm1-/-小鼠中提取富集的海马体和皮质线粒体组分(分别为EHMFs/ECMFs),通过定量实时耗氧量来测量呼吸作用,通过蓝色非变性聚丙烯酰胺凝胶电泳来检测氧化磷酸化(OXPHOS)相关蛋白的超分子组装,通过等电聚焦(IEF)来检测翻译后修饰(PTM),并通过电子显微镜来观察线粒体超微结构。与我们之前在Chrm1-/-ECMFs中的观察结果相反,Chrm1-/-小鼠的EHMFs呼吸作用显著增强,同时OXPHOS相关蛋白,特别是Atp5a和Uqcrc2的超分子组装增加,且没有线粒体超微结构改变。来自Chrm1-/-小鼠的ECMFs和EHMFs的IEF显示,相对于野生型小鼠,Atp5a在带负电荷(pH∼3)组分中的含量分别降低和增加,同时Atp5a的超分子组装相应减少或增加,呼吸作用也如此,这表明存在组织特异性信号效应。我们的研究结果表明,皮质中Chrm1的缺失会导致线粒体的结构和生理改变,从而损害神经元功能,而海马体中Chrm1的缺失可能通过增强线粒体功能而使神经元功能受益。Chrm1缺失对线粒体功能的这种脑区特异性差异效应支持了我们基于人类脑区的发现以及Chrm1-/-小鼠的行为表型。此外,我们的研究表明,Chrm1介导的Atp5a脑区特异性差异PTM可能会改变复合物V的超分子组装,进而调节线粒体的结构功能。