Suppr超能文献

学习带有顺序和大小信息的人工数字符号。

Learning artificial number symbols with ordinal and magnitude information.

作者信息

Weiers Hanna, Inglis Matthew, Gilmore Camilla

机构信息

Centre for Mathematical Cognition, Loughborough University, Loughborough LE11 3TU, UK.

出版信息

R Soc Open Sci. 2023 Jun 7;10(6):220840. doi: 10.1098/rsos.220840. eCollection 2023 Jun.

Abstract

The question of how numerical symbols gain semantic meaning is a key focus of mathematical cognition research. Some have suggested that symbols gain meaning from magnitude information, by being mapped onto the approximate number system, whereas others have suggested symbols gain meaning from their ordinal relations to other symbols. Here we used an artificial symbol learning paradigm to investigate the effects of magnitude and ordinal information on number symbol learning. Across two experiments, we found that after either magnitude or ordinal training, adults successfully learned novel symbols and were able to infer their ordinal and magnitude meanings. Furthermore, adults were able to make relatively accurate judgements about, and map between, the novel symbols and non-symbolic quantities (dot arrays). Although both ordinal and magnitude training was sufficient to attach meaning to the symbols, we found beneficial effects on the ability to learn and make numerical judgements about novel symbols when combining small amounts of magnitude information for a symbol subset with ordinal information about the whole set. These results suggest that a combination of magnitude and ordinal information is a plausible account of the symbol learning process.

摘要

数字符号如何获得语义意义的问题是数学认知研究的关键焦点。一些人认为,符号通过映射到近似数字系统从数量信息中获得意义,而另一些人则认为符号从它们与其他符号的顺序关系中获得意义。在这里,我们使用人工符号学习范式来研究数量和顺序信息对数字符号学习的影响。在两个实验中,我们发现,经过数量或顺序训练后,成年人成功地学习了新符号,并能够推断出它们的顺序和数量意义。此外,成年人能够对新符号和非符号数量(点阵)做出相对准确的判断,并在它们之间进行映射。虽然顺序和数量训练都足以使符号具有意义,但我们发现,当将少量数量信息与关于整个集合的顺序信息相结合时,对学习新符号和做出数字判断的能力有有益的影响。这些结果表明,数量和顺序信息的结合是符号学习过程的一个合理解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2d/10245205/cea1aaee5b1a/rsos220840f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验