Suppr超能文献

重新审视符号接地问题:对ANS映射理论的全面评估以及基于符号-符号关联的替代理论的提出

The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol-Symbol Associations.

作者信息

Reynvoet Bert, Sasanguie Delphine

机构信息

Brain and Cognition Research Unit, Faculty of Psychology and Educational SciencesKU Leuven, Leuven, Belgium; Faculty of Psychology and Educational SciencesKU Leuven Kulak, Kortrijk, Belgium.

出版信息

Front Psychol. 2016 Oct 13;7:1581. doi: 10.3389/fpsyg.2016.01581. eCollection 2016.

Abstract

Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the 'symbol grounding problem,' i.e., how does a symbol acquires its numerical meaning? The most popular account, the approximate number system () , assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1) there is an evolutionary system for approximate number processing, (2) non-symbolic and symbolic number processing show the same behavioral effects, (3) non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4) non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgment tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this should be considered as a worthy alternative of how symbols acquire their meaning.

摘要

最近,数值认知领域发表了许多研究,证明了数字符号处理与数学成绩的个体差异之间存在紧密联系。由于数字符号对数学成绩至关重要,许多研究人员希望解答“符号基础问题”,即符号是如何获得其数字意义的?最流行的解释是近似数字系统(ANS),它假定符号通过映射到非语言的近似数字系统而获得其数字意义。在此,我们批判性地评估了四个支持这一解释的论据,即:(1)存在一个用于近似数字处理的进化系统;(2)非符号和符号数字处理表现出相同的行为效应;(3)非符号和符号数字激活相同的脑区,这些脑区也参与更高级的计算;(4)非符号比较与符号数学成绩任务的表现相关。基于这一评估,我们得出结论,所有这些论据以及因此的映射解释都是有问题的。接下来,我们探讨了不太流行的另一种解释,即小数字符号最初映射到精确表征上,然后,随着对计数列表的了解增加,形成一个基于符号之间顺序关系的独立且精确的符号系统。我们通过遵循相同的四个论据回顾顺序判断任务的证据来评估这一解释。尽管还需要进一步研究,但目前可得的证据表明,这一解释应被视为符号如何获得其意义的一个有价值的替代解释。

相似文献

5
Learning artificial number symbols with ordinal and magnitude information.学习带有顺序和大小信息的人工数字符号。
R Soc Open Sci. 2023 Jun 7;10(6):220840. doi: 10.1098/rsos.220840. eCollection 2023 Jun.
8
On the Difference Between Numerosity Processing and Number Processing.论数量处理与数字处理之间的差异。
Front Psychol. 2018 Sep 12;9:1650. doi: 10.3389/fpsyg.2018.01650. eCollection 2018.
10

引用本文的文献

5
Learning artificial number symbols with ordinal and magnitude information.学习带有顺序和大小信息的人工数字符号。
R Soc Open Sci. 2023 Jun 7;10(6):220840. doi: 10.1098/rsos.220840. eCollection 2023 Jun.
6
Understanding the complexities of mathematical cognition: A multi-level framework.理解数学认知的复杂性:一个多层次的框架。
Q J Exp Psychol (Hove). 2023 Sep;76(9):1953-1972. doi: 10.1177/17470218231175325. Epub 2023 May 27.

本文引用的文献

3
On the ordinality of numbers: A review of neural and behavioral studies.论数字的序数性:神经与行为研究综述
Prog Brain Res. 2016;227:187-221. doi: 10.1016/bs.pbr.2016.04.010. Epub 2016 May 27.
4
Neuronal foundations of human numerical representations.人类数字表征的神经基础。
Prog Brain Res. 2016;227:1-27. doi: 10.1016/bs.pbr.2016.04.015. Epub 2016 May 27.
5
The neuronal code for number.数字的神经元编码。
Nat Rev Neurosci. 2016 Jun;17(6):366-82. doi: 10.1038/nrn.2016.40. Epub 2016 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验