Suppr超能文献

基于无线 EEG 头戴设备的青少年计算机辅助抑郁筛查的机器学习模型。

Machine Learning Model for Computer-Aided Depression Screening among Young Adults Using Wireless EEG Headset.

机构信息

Department of Electrical and Electronic Engineering, Independent University Bangladesh (IUB), Dhaka, Bangladesh.

Biomedical Instrumentation and Signal Processing Lab (BISPL), Independent University Bangladesh (IUB), Dhaka, Bangladesh.

出版信息

Comput Intell Neurosci. 2023 May 31;2023:1701429. doi: 10.1155/2023/1701429. eCollection 2023.

Abstract

Depression is a disorder that if not treated can hamper the quality of life. EEG has shown great promise in detecting depressed individuals from depression control individuals. It overcomes the limitations of traditional questionnaire-based methods. In this study, a machine learning-based method for detecting depression among young adults using EEG data recorded by the wireless headset is proposed. For this reason, EEG data has been recorded using an Emotiv Epoc+ headset. A total of 32 young adults participated and the PHQ9 screening tool was used to identify depressed participants. Features such as skewness, kurtosis, variance, Hjorth parameters, Shannon entropy, and Log energy entropy from 1 to 5 sec data filtered at different band frequencies were applied to KNN and SVM classifiers with different kernels. At AB band (8-30 Hz) frequency, 98.43 ± 0.15% accuracy was achieved by extracting Hjorth parameters, Shannon entropy, and Log energy entropy from 5 sec samples with a 5-fold CV using a KNN classifier. And with the same features and classifier overall accuracy = 98.10 ± 0.11, NPV = 0.977, precision = 0.984, sensitivity = 0.984, specificity = 0.976, and F1 score = 0.984 was achieved after splitting the data to 70/30 ratio for training and testing with 5-fold CV. From the findings, it can be concluded that EEG data from an Emotiv headset can be used to detect depression with the proposed method.

摘要

抑郁症是一种如果得不到治疗就会影响生活质量的疾病。脑电图在从抑郁对照组中检测出抑郁个体方面显示出了巨大的潜力。它克服了传统基于问卷的方法的局限性。在这项研究中,提出了一种使用无线耳机记录的脑电图数据来检测年轻人抑郁症的基于机器学习的方法。为此,使用 Emotiv Epoc+耳机记录脑电图数据。共有 32 名年轻人参与,使用 PHQ9 筛选工具来识别抑郁参与者。从不同频段滤波的 1 到 5 秒数据中提取偏度、峰度、方差、Hjorth 参数、香农熵和对数能量熵等特征,并将其应用于具有不同核函数的 KNN 和 SVM 分类器。在 AB 频段(8-30 Hz)频率下,通过使用 KNN 分类器在 5 折 CV 中从 5 秒样本中提取 Hjorth 参数、香农熵和对数能量熵,可实现 98.43±0.15%的准确率。使用相同的特征和分类器,总体准确率=98.10±0.11、NPV=0.977、精度=0.984、灵敏度=0.984、特异性=0.976 和 F1 分数=0.984,通过将数据分为 70/30 的比例进行训练和测试,并使用 5 折 CV。从研究结果可以得出结论,使用提出的方法可以使用 Emotiv 耳机的脑电图数据来检测抑郁症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a61f/10247322/86a934256c53/CIN2023-1701429.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验