Suppr超能文献

利用便携式脑电图衍生生物标志物预测创伤后应激障碍症状严重程度

Towards predicting PTSD symptom severity using portable EEG-derived biomarkers.

作者信息

Peddi Ashritha, Sendi Mohammad S E, Minton Sean T, Hinojosa Cecilia A, West Emma, Langhinrichsen-Rohling Ryan, Ressler Kerry J, Calhoun Vince D, van Rooij Sanne J H

机构信息

Georgia State University, Atlanta, GA.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA.

出版信息

medRxiv. 2024 Jul 18:2024.07.17.24310570. doi: 10.1101/2024.07.17.24310570.

Abstract

Posttraumatic Stress Disorder (PTSD) is a heterogeneous mental health disorder that occurs following traumatic experience. Understanding its neurobiological basis is crucial to advance early diagnosis and treatment. Electroencephalography (EEG) can be used to explore the neurobiological basis of PTSD. However, only limited research has explored mobile EEG, which is important for scalability. This proof-of-concept study delves into mobile EEG-derived biomarkers for PTSD and their potential implications. Over four weeks, we measured PTSD symptoms using the PTSD checklist for DSM-5 (PCL-5) at multiple timepoints, and we recorded multiple EEG sessions from 21 individuals using a mobile EEG device. In total, we captured 38 EEG sessions, each comprising two recordings that lasted approximately 180 seconds, to evaluate reproducibility. Next, we extracted Shannon entropy, as a measure of the randomness or unpredictability of the signal and spectral power for the fronto-temporal regions of interest, including electrodes at AF3, AF4, T7, and T8 for each EEG recording session. We calculated the partial correlation between the EEG variables and PCL-5 measured closest to the EEG session, using age, sex, and the grouping variable 'batch' as covariates. We observed a significant negative correlation between Shannon entropy in fronto-temporal regions and PCL-5 scores. Specifically, this association was evident in the AF3 ( = -0.456, FDR-corrected = 0.01), AF4 ( = -0.362, FDR-corrected = 0.04), and T7 ( = -0.472, FDR-corrected = 0.01) regions. Additionally, we found a significant negative association between the alpha power estimated from AF4 and PCL-5 (=-0.429, FDR-corrected =0.04). Our findings suggest that EEG data acquired using a mobile EEG device is associated with PTSD symptom severity, offering valuable insights into the neurobiological mechanisms underlying PTSD.

摘要

创伤后应激障碍(PTSD)是一种在创伤经历后出现的异质性心理健康障碍。了解其神经生物学基础对于推进早期诊断和治疗至关重要。脑电图(EEG)可用于探索PTSD的神经生物学基础。然而,仅有有限的研究探索了可用于扩展性研究的便携式脑电图,本概念验证研究深入探讨了源自便携式脑电图的PTSD生物标志物及其潜在意义。在四周时间里,我们使用针对《精神疾病诊断与统计手册》第5版(DSM-5)的PTSD检查表(PCL-5)在多个时间点测量PTSD症状,并使用便携式脑电图设备记录了21名个体的多次脑电图数据。我们总共采集了38次脑电图数据,每次包含两段持续约180秒的记录,以评估可重复性。接下来,我们提取了香农熵,作为信号随机性或不可预测性的度量,并提取了感兴趣的额颞区域的频谱功率,每个脑电图记录时段包括电极AF3、AF4、T7和T8。我们以年龄、性别和分组变量“批次”作为协变量,计算了脑电图变量与最接近脑电图记录时段所测量的PCL-5之间的偏相关性。我们观察到额颞区域的香农熵与PCL-5评分之间存在显著负相关。具体而言,这种关联在AF3(r = -0.456,经FDR校正,p = 0.01)、AF4(r = -0.362,经FDR校正,p = 0.04)和T7(r = -0.472,经FDR校正,p = 0.01)区域明显。此外,我们发现从AF4估计的α功率与PCL-5之间存在显著负相关(r = -0.429,经FDR校正,p = 0.04)。我们的研究结果表明,使用便携式脑电图设备获取的脑电图数据与PTSD症状严重程度相关,为PTSD潜在的神经生物学机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de30/11275680/1cd29e621b86/nihpp-2024.07.17.24310570v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验