Suppr超能文献

用电化学碳纳米管膜去除类固醇激素微污染物中的吸附和降解作用的区分。

Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane.

机构信息

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.

Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Commun. 2024 Nov 4;15(1):9524. doi: 10.1038/s41467-024-52730-7.

Abstract

The growing concern over micropollutants in aquatic ecosystems motivates the development of electrochemical membrane reactors (EMRs) as a sustainable water treatment solution. Nevertheless, the intricate interplay among adsorption/desorption, electrochemical reactions, and byproduct formation within EMR complicates the understanding of their mechanisms. Herein, the degradation of micropollutants using an EMR equipped with carbon nanotube membrane are investigated, employing isotope-labeled steroid hormone micropollutant. The integration of high-performance liquid chromatography with a flow scintillator analyzer and liquid scintillation counting techniques allows to differentiate hormone removal by concurrent adsorption and degradation. Pre-adsorption of hormone is found not to limit its subsequent degradation, attributed to the rapid adsorption kinetics and effective mass transfer of EMR. This analytical approach facilitates determining the limiting factors affecting the hormone degradation under variable conditions. Increasing the voltage from 0.6 to 1.2 V causes the degradation dynamics to transition from being controlled by electron transfer rates to an adsorption-rate-limited regime. These findings unravels some underlying mechanisms of EMR, providing valuable insights for designing electrochemical strategies for micropollutant control.

摘要

水生生态系统中微污染物引起的日益关注促使电化学膜反应器(EMR)作为一种可持续的水处理解决方案得到发展。然而,EMR 内吸附/解吸、电化学反应和副产物形成之间的复杂相互作用使得对其机制的理解变得复杂。本文采用带有碳纳米管膜的 EMR 对同位素标记的甾体激素微污染物进行降解研究,利用高效液相色谱与流动闪烁分析仪和液体闪烁计数技术相结合,可区分通过共吸附和降解去除激素。发现激素的预吸附不会限制其随后的降解,这归因于 EMR 的快速吸附动力学和有效的传质。这种分析方法有助于确定在不同条件下影响激素降解的限制因素。将电压从 0.6 增加到 1.2 V 会导致降解动力学从由电子转移速率控制转变为吸附速率限制的状态。这些发现揭示了 EMR 的一些潜在机制,为设计用于控制微污染物的电化学策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c01/11535516/4fed10f9644c/41467_2024_52730_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验