文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人工智能的药物发现毒性预测的最新进展。

Recent advances in AI-based toxicity prediction for drug discovery.

作者信息

Lee Hyundo, Kim Jisan, Kim Ji-Woon, Lee Yoonji

机构信息

Department of Global Innovative Drugs, Chung-Ang University, Seoul, Republic of Korea.

College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.

出版信息

Front Chem. 2025 Jul 8;13:1632046. doi: 10.3389/fchem.2025.1632046. eCollection 2025.


DOI:10.3389/fchem.2025.1632046
PMID:40698059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12279745/
Abstract

Toxicity, defined as the potential harm a substance can cause to living organisms, requires the implementation of stringent regulatory standards to ensure public safety. These standards involve comprehensive testing frameworks, including hazard identification, dose-response evaluation, exposure assessment, and risk characterization. In drug discovery and development, these processes are often complex, time-consuming, and also resource-intensive. Toxicity-related failures in the later stages of drug development can lead to substantial financial losses, underscoring the need for reliable toxicity prediction during the early discovery phases. The advent of computational approaches has accelerated a shift toward modeling, virtual screening, and, notably, artificial intelligence (AI) to identify potential toxicities earlier in the pipeline. Ongoing advances in databases, algorithms, and computational power have further expanded AI's role in pharmaceutical research. Today, AI models are capable of predicting wide range of toxicity endpoints, such as hepatotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity, and genotoxicity, based on diverse molecular representations ranging from traditional descriptors to graph-based methods. This review provides an in-depth examination of AI-driven toxicity prediction, emphasizing its transformative impact on drug discovery and its growing importance in improving safety assessments.

摘要

毒性被定义为一种物质可能对生物体造成的潜在危害,这就需要实施严格的监管标准以确保公众安全。这些标准涉及全面的测试框架,包括危害识别、剂量反应评估、暴露评估和风险特征描述。在药物发现和开发过程中,这些流程通常复杂、耗时且资源密集。药物开发后期与毒性相关的失败可能导致巨大的经济损失,这凸显了在早期发现阶段进行可靠毒性预测的必要性。计算方法的出现加速了向建模、虚拟筛选,尤其是人工智能(AI)的转变,以便在研发流程中更早地识别潜在毒性。数据库、算法和计算能力的不断进步进一步扩大了AI在药物研究中的作用。如今,AI模型能够基于从传统描述符到基于图形的方法等多种分子表示,预测广泛的毒性终点,如肝毒性、心脏毒性、肾毒性、神经毒性和遗传毒性。本综述深入探讨了AI驱动的毒性预测,强调其对药物发现的变革性影响以及在改进安全性评估方面日益增长的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fe/12279745/6ea2c15a71d8/fchem-13-1632046-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fe/12279745/64cf2ce70c3a/fchem-13-1632046-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fe/12279745/6ea2c15a71d8/fchem-13-1632046-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fe/12279745/64cf2ce70c3a/fchem-13-1632046-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23fe/12279745/6ea2c15a71d8/fchem-13-1632046-g002.jpg

相似文献

[1]
Recent advances in AI-based toxicity prediction for drug discovery.

Front Chem. 2025-7-8

[2]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[3]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[4]
The Potential of Artificial Intelligence in Pharmaceutical Innovation: From Drug Discovery to Clinical Trials.

Pharmaceuticals (Basel). 2025-5-25

[5]
Identifying and Addressing Bullying

2025-1

[6]
Gaps in Artificial Intelligence Research for Rural Health in the United States: A Scoping Review.

medRxiv. 2025-6-27

[7]
AI for IMPACTS Framework for Evaluating the Long-Term Real-World Impacts of AI-Powered Clinician Tools: Systematic Review and Narrative Synthesis.

J Med Internet Res. 2025-2-5

[8]
The impact of artificial intelligence on the endoscopic assessment of inflammatory bowel disease-related neoplasia.

Therap Adv Gastroenterol. 2025-6-23

[9]
Short-Term Memory Impairment

2025-1

[10]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

本文引用的文献

[1]
hERGAT: predicting hERG blockers using graph attention mechanism through atom- and molecule-level interaction analyses.

J Cheminform. 2025-1-28

[2]
NeuTox 2.0: A hybrid deep learning architecture for screening potential neurotoxicity of chemicals based on multimodal feature fusion.

Environ Int. 2025-1

[3]
AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers.

J Cheminform. 2024-12-23

[4]
hERGBoost: A gradient boosting model for quantitative IC prediction of hERG channel blockers.

Comput Biol Med. 2025-1

[5]
Deep active learning with high structural discriminability for molecular mutagenicity prediction.

Commun Biol. 2024-8-31

[6]
Exhaustive local chemical space exploration using a transformer model.

Nat Commun. 2024-8-25

[7]
Improved Detection of Drug-Induced Liver Injury by Integrating Predicted and Data.

Chem Res Toxicol. 2024-8-19

[8]
Augmenting large language models with chemistry tools.

Nat Mach Intell. 2024

[9]
ProTox 3.0: a webserver for the prediction of toxicity of chemicals.

Nucleic Acids Res. 2024-7-5

[10]
Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction.

Nucleic Acids Res. 2024-7-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索