Suppr超能文献

学习用于鲁棒对应关系的概率坐标场

Learning Probabilistic Coordinate Fields for Robust Correspondences.

作者信息

Zhao Weiyue, Lu Hao, Ye Xinyi, Cao Zhiguo, Li Xin

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Oct;45(10):12004-12021. doi: 10.1109/TPAMI.2023.3284487. Epub 2023 Sep 5.

Abstract

We introduce Probabilistic Coordinate Fields (PCFs), a novel geometric-invariant coordinate representation for image correspondence problems. In contrast to standard Cartesian coordinates, PCFs encode coordinates in correspondence-specific barycentric coordinate systems (BCS) with affine invariance. To know when and where to trust the encoded coordinates, we implement PCFs in a probabilistic network termed PCF-Net, which parameterizes the distribution of coordinate fields as Gaussian mixture models. By jointly optimizing coordinate fields and their confidence conditioned on dense flows, PCF-Net can work with various feature descriptors when quantifying the reliability of PCFs by confidence maps. An interesting observation of this work is that the learned confidence map converges to geometrically coherent and semantically consistent regions, which facilitates robust coordinate representation. By delivering the confident coordinates to keypoint/feature descriptors, we show that PCF-Net can be used as a plug-in to existing correspondence-dependent approaches. Extensive experiments on both indoor and outdoor datasets suggest that accurate geometric invariant coordinates help to achieve the state of the art in several correspondence problems, such as sparse feature matching, dense image registration, camera pose estimation, and consistency filtering. Further, the interpretable confidence map predicted by PCF-Net can also be leveraged to other novel applications from texture transfer to multi-homography classification.

摘要

我们引入概率坐标场(PCFs),这是一种用于图像匹配问题的新型几何不变坐标表示。与标准笛卡尔坐标不同,PCFs在具有仿射不变性的特定匹配重心坐标系(BCS)中对坐标进行编码。为了知道何时以及在何处信任编码坐标,我们在一个名为PCF-Net的概率网络中实现PCFs,该网络将坐标场的分布参数化为高斯混合模型。通过联合优化坐标场及其基于密集流的置信度,当通过置信度图量化PCFs的可靠性时,PCF-Net可以与各种特征描述符配合使用。这项工作的一个有趣发现是,学习到的置信度图收敛到几何上连贯且语义上一致的区域,这有助于实现鲁棒的坐标表示。通过将置信坐标传递给关键点/特征描述符,我们表明PCF-Net可以用作现有依赖匹配方法的插件。在室内和室外数据集上进行的大量实验表明,精确的几何不变坐标有助于在多个匹配问题中达到当前最优水平,例如稀疏特征匹配、密集图像配准、相机姿态估计和一致性过滤。此外,PCF-Net预测的可解释置信度图还可以应用于从纹理转移到多单应性分类等其他新应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验