Guo Yuan, Li Wenpeng, Zhai Ping
Department of Computer Science and Technology, Heilongjiang University, No. 74 Xuefu Road, Harbin, 150080, Heilongjiang, China.
School of Computer and Control Engineering, Qiqihar University, No. 42 Wenhua Street, Qiqihar, 161006, Heilongjiang, China.
Sci Rep. 2025 Jan 23;15(1):2961. doi: 10.1038/s41598-025-87309-9.
Feature matching in computer vision is crucial but challenging in weakly textured scenes due to the lack of pattern repetition. We introduce the SwinMatcher feature matching method, aimed at addressing the issues of low matching quantity and poor matching precision in weakly textured scenes. Given the inherently significant local characteristics of image features, we employ a local self-attention mechanism to learn from weakly textured areas, maximally preserving the features of weak textures. To address the issue of incorrect matches in scenes with repetitive patterns, we use a cross-attention and positional encoding mechanism to learn the correct matches of repetitive patterns in two scenes, achieving higher matching precision. We also introduce a matching optimization algorithm that calculates the spatial expected coordinates of local two-dimensional heat maps of correspondences to obtain the final sub-pixel level matches. Experiments indicate that, under identical training conditions, the SwinMatcher outperforms other standard methods in pose estimation, homography estimation, and visual localization. It exhibits strong robustness and superior matching in weakly textured areas, offering a new research direction for feature matching in weakly textured images.
在计算机视觉中,特征匹配至关重要,但由于缺乏图案重复,在纹理较弱的场景中具有挑战性。我们引入了SwinMatcher特征匹配方法,旨在解决纹理较弱场景中匹配数量少和匹配精度差的问题。鉴于图像特征固有的显著局部特征,我们采用局部自注意力机制从纹理较弱的区域进行学习,最大程度地保留弱纹理的特征。为了解决具有重复图案的场景中匹配错误的问题,我们使用交叉注意力和位置编码机制来学习两个场景中重复图案的正确匹配,从而实现更高的匹配精度。我们还引入了一种匹配优化算法,该算法计算对应关系的局部二维热图的空间期望坐标,以获得最终的亚像素级匹配。实验表明,在相同的训练条件下,SwinMatcher在姿态估计、单应性估计和视觉定位方面优于其他标准方法。它在纹理较弱的区域表现出强大的鲁棒性和卓越的匹配能力,为纹理较弱图像的特征匹配提供了新的研究方向。