Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, PR China.
The Institute of Big Data, Central South University, Changsha, 410083, PR China.
J Biomed Inform. 2023 Jul;143:104408. doi: 10.1016/j.jbi.2023.104408. Epub 2023 Jun 7.
Predicting the patient's in-hospital mortality from the historical Electronic Medical Records (EMRs) can assist physicians to make clinical decisions and assign medical resources. In recent years, researchers proposed many deep learning methods to predict in-hospital mortality by learning patient representations. However, most of these methods fail to comprehensively learn the temporal representations and do not sufficiently mine the contextual knowledge of demographic information. We propose a novel end-to-end approach based on Local and Global Temporal Representation Learning with Demographic Embedding (LGTRL-DE) to address the current issues for in-hospital mortality prediction. LGTRL-DE is enabled by (1) a local temporal representation learning module that captures the temporal information and analyzes the health status from a local perspective through a recurrent neural network with the demographic initialization and the local attention mechanism; (2) a Transformer-based global temporal representation learning module that extracts the interaction dependencies among clinical events; (3) a multi-view representation fusion module that fuses temporal and static information and generates the final patient's health representations. We evaluate our proposed LGTRL-DE on two public real-world clinical datasets (MIMIC-III and e-ICU). Experimental results show that LGTRL-DE achieves area under receiver operating characteristic curve of 0.8685 and 0.8733 on the MIMIC-III and e-ICU datasets, respectively, outperforming several state-of-the-art approaches.
从历史电子病历 (EMR) 预测患者住院死亡率可以帮助医生做出临床决策和分配医疗资源。近年来,研究人员提出了许多深度学习方法,通过学习患者表示来预测住院死亡率。然而,这些方法大多无法全面学习时间表示,也不能充分挖掘人口统计学信息的上下文知识。我们提出了一种新的端到端方法,基于局部和全局时间表示学习与人口统计学嵌入 (LGTRL-DE),以解决当前住院死亡率预测中的问题。LGTRL-DE 通过以下方式实现:(1)局部时间表示学习模块,通过具有人口统计学初始化和局部注意力机制的循环神经网络,从局部角度捕获时间信息并分析健康状况;(2)基于 Transformer 的全局时间表示学习模块,提取临床事件之间的交互依赖关系;(3)多视图表示融合模块,融合时间和静态信息并生成最终的患者健康表示。我们在两个公共真实临床数据集 (MIMIC-III 和 e-ICU) 上评估了我们提出的 LGTRL-DE。实验结果表明,LGTRL-DE 在 MIMIC-III 和 e-ICU 数据集上的接收器操作特征曲线下面积分别为 0.8685 和 0.8733,优于几种最先进的方法。