Suppr超能文献

多模态时间-临床笔记网络用于死亡率预测。

Multimodal temporal-clinical note network for mortality prediction.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, 410083, China.

Changsha Hospital of Hunan Normal University, Changsha, China.

出版信息

J Biomed Semantics. 2021 Feb 15;12(1):3. doi: 10.1186/s13326-021-00235-3.

Abstract

BACKGROUND

Mortality prediction is an important task to achieve smart healthcare, especially for the management of intensive care unit. It can provide a reference for doctors to quickly predict the course of disease and customize early intervention programs for the patients in need. With the development of the electronic medical records, deep learning methods are introduced to deal with the prediction task. In the electronic medical records, clinical notes always contain rich and diverse medical information, including the clinical histories and reports during admission. Mortality prediction methods mostly rely on the temporal events such as medical examinations and ignore the related reports and history information in the clinical notes. We hope that we can utilize both temporal events and clinical notes information to get better mortality prediction results.

RESULTS

We propose a multimodal temporal-clinical note network to model both temporal and clinical notes. Specifically, the clinical text are further processed for differentiating the chronic illness patients in the historical information of clinical notes from non-chronic illness patients. In order to further mine the information related to the mortality in the text, we learn the time series embedding with Long Short Term Memory networks and the clinical notes embedding with a label aware convolutional neural network. We also propose a scoring function to measure the importance of clinical note sections. Our approach achieved a better AUCPR and AUCROC than competing methods and visual explanations for word importance showed the interpretability improvement of the model.

CONCLUSIONS

We have tested our methodology on the MIMIC-III dataset. Contributions of different clinical note sections were uncovered by visualization methods. Our work demonstrates that the introduction of the medical history related information can improve the performance of the mortality prediction. Using label aware convolutional neural networks can further improve the results.

摘要

背景

死亡率预测是实现智慧医疗的一项重要任务,特别是对重症监护病房的管理。它可以为医生提供参考,帮助他们快速预测疾病进程,并为有需要的患者定制早期干预方案。随着电子病历的发展,深度学习方法被引入到预测任务中。在电子病历中,临床记录通常包含丰富多样的医疗信息,包括住院期间的临床病史和报告。死亡率预测方法大多依赖于时间事件,如体检,而忽略了临床记录中的相关报告和历史信息。我们希望能够利用时间事件和临床记录信息来获得更好的死亡率预测结果。

结果

我们提出了一种多模态时间-临床记录网络来对时间和临床记录进行建模。具体来说,对临床文本进行进一步处理,以区分临床记录历史信息中患有慢性病的患者和非慢性病患者。为了进一步挖掘文本中与死亡率相关的信息,我们使用长短期记忆网络学习时间序列嵌入,使用标签感知卷积神经网络学习临床记录嵌入。我们还提出了一种评分函数来衡量临床记录部分的重要性。我们的方法在 MIMIC-III 数据集上的测试结果优于竞争方法,并且对单词重要性的可视化解释显示了模型的可解释性得到了提高。

结论

我们在 MIMIC-III 数据集上测试了我们的方法。通过可视化方法揭示了不同临床记录部分的贡献。我们的工作表明,引入与医疗史相关的信息可以提高死亡率预测的性能。使用标签感知卷积神经网络可以进一步提高结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee3b/7885612/ea63a8f8d07c/13326_2021_235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验