Suppr超能文献

基于电子健康记录的时态图形表示的预测建模

Predictive Modeling with Temporal Graphical Representation on Electronic Health Records.

作者信息

Chen Jiayuan, Yin Changchang, Wang Yuanlong, Zhang Ping

机构信息

The Ohio State University.

出版信息

IJCAI (U S). 2024 Aug;2024:5763-5771. doi: 10.24963/ijcai.2024/637.

Abstract

Deep learning-based predictive models, leveraging Electronic Health Records (EHR), are receiving increasing attention in healthcare. An effective representation of a patient's EHR should hierarchically encompass both the temporal relationships between historical visits and medical events, and the inherent structural information within these elements. Existing patient representation methods can be roughly categorized into sequential representation and graphical representation. The sequential representation methods focus only on the temporal relationships among longitudinal visits. On the other hand, the graphical representation approaches, while adept at extracting the graph-structured relationships between various medical events, fall short in effectively integrate temporal information. To capture both types of information, we model a patient's EHR as a novel temporal heterogeneous graph. This graph includes historical visits nodes and medical events nodes. It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status. Furthermore, we introduce a novel temporal graph transformer (TRANS) that integrates temporal edge features, global positional encoding, and local structural encoding into heterogeneous graph convolution, capturing both temporal and structural information. We validate the effectiveness of TRANS through extensive experiments on three real-world datasets. The results show that our proposed approach achieves state-of-the-art performance.

摘要

基于深度学习的预测模型利用电子健康记录(EHR),在医疗保健领域受到越来越多的关注。患者电子健康记录的有效表示应分层包含历史就诊与医疗事件之间的时间关系,以及这些元素内部的固有结构信息。现有的患者表示方法大致可分为序列表示和图形表示。序列表示方法仅关注纵向就诊之间的时间关系。另一方面,图形表示方法虽然擅长提取各种医疗事件之间的图结构关系,但在有效整合时间信息方面存在不足。为了捕捉这两种信息,我们将患者的电子健康记录建模为一种新型的时间异构图。该图包括历史就诊节点和医疗事件节点。它将医疗事件节点的结构化信息传播到就诊节点,并利用时间感知就诊节点来捕捉患者健康状况的变化。此外,我们引入了一种新型的时间图变换器(TRANS),它将时间边特征、全局位置编码和局部结构编码集成到异构图卷积中,同时捕捉时间和结构信息。我们通过在三个真实世界数据集上进行的大量实验验证了TRANS的有效性。结果表明,我们提出的方法实现了最优性能。

相似文献

7
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.
10
DGTR: Dynamic graph transformer for rumor detection.DGTR:用于谣言检测的动态图变换器
Front Res Metr Anal. 2023 Jan 11;7:1055348. doi: 10.3389/frma.2022.1055348. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验