QT Imaging, Inc, 3 Hamilton Landing, Suite 160, CA 94949, USA.
QT Imaging, Inc, 3 Hamilton Landing, Suite 160, CA 94949, USA.
Z Med Phys. 2023 Aug;33(3):427-443. doi: 10.1016/j.zemedi.2023.04.006. Epub 2023 Jun 7.
A novel 3D ultrasound tomographic (3D UT) method (called volography) that creates a speed of sound (SOS) map and a reflection modality that is co-registered are reviewed and shown to be artifact free even in the presence of high contrast and thus shown to be applicable for breast, orthopedic and pediatric clinical use cases. The 3D UT images are almost isotropic with mm resolution and the reflection image is compounded over 360 degrees to create sub-mm resolution in plane.
The physics of ultrasound scattering requires 3D modeling and the concomitant high computational cost is ameliorated with a bespoke algorithm (paraxial approximation - discussed here) and Nvidia GPUs. The resulting reconstruction times are tabulated for clinical relevance. The resulting SOS map is used to create a refraction corrected reflection image at ∼3.6 MHz center frequency. The transmission data are highly redundant, collected over 360 degrees and at 2 mm levels by true matrix receiver arrays yielding 3D data. The high resolution SOS and attenuation maps and reflection images are used in a segmentation algorithm that optimally utilizes this information to segment out glandular, ductal, connective tissue, fat and skin. These volumes are used to estimate breast density, an important correlate to cancer.
Multiple SOS images of breast, knee and segmentations of breast glandular and ductal tissue are shown. Spearman rho is calculated between our volumetric breast density estimates and Volpara™ from mammograms, as 0.9332. Multiple timing results are shown and indicate the variability of the reconstruction times with breast size and type but are ∼30 minutes for average size breast. The timing results with the 3D algorithm indicate ∼60 minute reconstruction times for pediatrics with two Nvidia GPUs. Characteristic variations of the glandular and ductal volumes over time are shown. The SOS from QT images are compared with literature values. The results of a multi-reader multi-case (MRMC) study are shown that compares the 3D UT with full field digital mammography and resulted in an average increase in ROC AUC of 10%. Orthopedic (knee) 3D UT images compared with MRI indicate regions of zero signal in the MRI are clearly displayed in the QT image. Explicit representation of the acoustic field is shown, indicating its 3D nature. An image of in vivo breast with the chest muscle is shown and speed of sound agreement with literature values are tabulated. Reference is made to a recently published paper validating pediatric imaging.
The high Spearman rho indicates a monotonic (not necessarily linear) relation between our method and industry gold standard Volpara™ density. The acoustic field verifies the need for 3D modeling. The MRMC study, the orthopedic images, breast density study, and references, all indicate the clinical utility of the SOS and reflection images. The QT image of the knee shows its ability to monitor tissue the MRI cannot. The included references and images herein indicate the proof of concept for 3D UT as a viable and valuable clinical adjunct in pediatric and orthopedic situations in addition to the breast imaging.
介绍了一种新的三维超声层析(3D UT)方法(称为声速图),该方法创建声速(SOS)图和反射方式,并进行共配准,即使在存在高对比度的情况下也能证明其无伪影,因此适用于乳房、骨科和儿科临床应用。3D UT 图像几乎各向同性,分辨率为毫米,反射图像在 360 度范围内复合,以在平面内产生亚毫米分辨率。
超声散射的物理性质需要进行 3D 建模,同时需要高计算成本,因此采用了定制算法(傍轴近似-这里讨论)和 Nvidia GPU 来改善。表中列出了与临床相关的重建时间。SOS 图用于在中心频率约为 3.6 MHz 时创建折射校正的反射图像。传输数据高度冗余,通过真正的矩阵接收器阵列在 360 度和 2 毫米的水平上采集,以生成 3D 数据。高分辨率 SOS 和衰减图以及反射图像用于分割算法中,该算法可优化利用这些信息来分割出腺体、导管、结缔组织、脂肪和皮肤。这些体积用于估计乳房密度,这是与癌症相关的重要指标。
显示了乳房、膝盖的多个 SOS 图像和乳房腺组织和导管组织的分割。计算了我们的体积乳房密度估计值与来自乳房 X 光照片的 Volpara™之间的 Spearman rho,为 0.9332。显示了多个定时结果,表明重建时间随乳房大小和类型而变化,但对于平均大小的乳房约为 30 分钟。使用 3D 算法的定时结果表明,对于儿科患者,使用两个 Nvidia GPU 的重建时间约为 60 分钟。显示了腺体和导管体积随时间的特征变化。与文献值比较了 QT 图像的 SOS。显示了多读者多病例(MRMC)研究的结果,该研究将 3D UT 与全视野数字乳房摄影进行了比较,结果平均增加了 ROC AUC 约 10%。与 MRI 相比,骨科(膝盖)3D UT 图像表明 MRI 中没有信号的区域在 QT 图像中清晰显示。显示了声场的明确表示,表明其 3D 性质。显示了体内乳房的图像,并列出了与文献值的声速一致性。提到了最近发表的一篇验证儿科成像的论文。
高 Spearman rho 表明我们的方法与行业黄金标准 Volpara™密度之间存在单调(不一定是线性)关系。声场验证了 3D 建模的必要性。MRMC 研究、骨科图像、乳房密度研究和参考文献均表明 SOS 和反射图像的临床实用性。膝盖的 QT 图像显示其能够监测 MRI 无法监测的组织。本文包含的参考文献和图像表明,3D UT 作为一种可行且有价值的临床辅助手段,除了在乳房成像方面外,在儿科和骨科情况下也具有潜力。