Suppr超能文献

一种基于目标检测和深度学习的三维面部软组织标志点预测自动化方法。

An Automated Method of 3D Facial Soft Tissue Landmark Prediction Based on Object Detection and Deep Learning.

作者信息

Zhang Yuchen, Xu Yifei, Zhao Jiamin, Du Tianjing, Li Dongning, Zhao Xinyan, Wang Jinxiu, Li Chen, Tu Junbo, Qi Kun

机构信息

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an 710004, China.

Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering, School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Diagnostics (Basel). 2023 May 25;13(11):1853. doi: 10.3390/diagnostics13111853.

Abstract

BACKGROUND

Three-dimensional facial soft tissue landmark prediction is an important tool in dentistry, for which several methods have been developed in recent years, including a deep learning algorithm which relies on converting 3D models into 2D maps, which results in the loss of information and precision.

METHODS

This study proposes a neural network architecture capable of directly predicting landmarks from a 3D facial soft tissue model. Firstly, the range of each organ is obtained by an object detection network. Secondly, the prediction networks obtain landmarks from the 3D models of different organs.

RESULTS

The mean error of this method in local experiments is 2.62±2.39, which is lower than that in other machine learning algorithms or geometric information algorithms. Additionally, over 72% of the mean error of test data falls within ±2.5 mm, and 100% falls within 3 mm. Moreover, this method can predict 32 landmarks, which is higher than any other machine learning-based algorithm.

CONCLUSIONS

According to the results, the proposed method can precisely predict a large number of 3D facial soft tissue landmarks, which gives the feasibility of directly using 3D models for prediction.

摘要

背景

三维面部软组织标志点预测是牙科领域的一项重要工具,近年来已开发出多种方法,其中包括一种深度学习算法,该算法依赖于将三维模型转换为二维地图,这会导致信息和精度的损失。

方法

本研究提出了一种能够直接从三维面部软组织模型预测标志点的神经网络架构。首先,通过目标检测网络获取每个器官的范围。其次,预测网络从不同器官的三维模型中获取标志点。

结果

该方法在局部实验中的平均误差为2.62±2.39,低于其他机器学习算法或几何信息算法。此外,测试数据平均误差的72%以上落在±2.5毫米范围内,100%落在3毫米范围内。而且,该方法可以预测32个标志点,高于任何其他基于机器学习的算法。

结论

根据结果,所提出的方法可以精确预测大量三维面部软组织标志点,这为直接使用三维模型进行预测提供了可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ed5/10252224/cbb2a78d6f36/diagnostics-13-01853-g001.jpg

相似文献

5
[Deep learning-assisted construction of three-demensional facial midsagittal plane].[深度学习辅助构建三维面部正中矢状平面]
Beijing Da Xue Xue Bao Yi Xue Ban. 2022 Feb 18;54(1):134-139. doi: 10.19723/j.issn.1671-167X.2022.01.021.

本文引用的文献

5
Registration of 3-dimensional facial photographs for clinical use.用于临床的三维面部照片登记。
J Oral Maxillofac Surg. 2010 Oct;68(10):2391-401. doi: 10.1016/j.joms.2009.10.017. Epub 2010 Aug 12.
6
Development of a new three-dimensional cranial imaging system.一种新型三维颅骨成像系统的研发。
J Craniofac Surg. 2004 Jan;15(1):175-81. doi: 10.1097/00001665-200401000-00042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验