Suppr超能文献

使用HDBN和CAEN框架优化医疗系统中的疾病预测。

Optimized disease prediction in healthcare systems using HDBN and CAEN framework.

作者信息

Prabaharan G, Udhaya Sankar S M, Anusuya V, Jaya Deepthi K, Lotus Rayappan, Sugumar R

机构信息

Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India.

Department of CSE (Cyber Security), R.M.K. College of Engineering and Technology, Puduvoyal, India.

出版信息

MethodsX. 2025 Apr 25;14:103338. doi: 10.1016/j.mex.2025.103338. eCollection 2025 Jun.

Abstract

Classification and segmentation play a pivotal role in transforming decision-making processes in healthcare, IoT, and edge computing. However, existing methodologies often struggle with accuracy, precision, and specificity when applied to large, heterogeneous datasets, particularly in minimizing false positives and negatives. To address these challenges, we propose a robust hybrid framework comprising three key phases: feature extraction using a Hybrid Deep Belief Network (HDBN), dynamic prediction aggregation via a Custom Adaptive Ensemble Network (CAEN), and an optimization mechanism ensuring adaptability and robustness. Extensive evaluations on four diverse datasets demonstrate the framework's superior performance, achieving 93 % accuracy, 87 % precision, 95 % specificity, and 91 % recall. Advanced metrics, including a Matthews Correlation Coefficient of 0.8932, validate its reliability. The proposed framework establishes a new benchmark for scalable, high-performance classification and segmentation, offering robust solutions for real-world applications and paving the way for future integration with explainable AI and real-time systems.•Designed a novel hybrid framework integrating HDBN and CAEN for adaptive feature extraction and prediction.•Proposed dynamic prediction aggregation and optimization strategies enhancing robustness across diverse data scenarios.

摘要

分类和分割在改变医疗保健、物联网和边缘计算中的决策过程方面发挥着关键作用。然而,现有方法在应用于大型异构数据集时,往往在准确性、精确性和特异性方面存在困难,尤其是在最小化误报和漏报方面。为应对这些挑战,我们提出了一个强大的混合框架,它包括三个关键阶段:使用混合深度信念网络(HDBN)进行特征提取、通过自定义自适应集成网络(CAEN)进行动态预测聚合以及确保适应性和鲁棒性的优化机制。对四个不同数据集的广泛评估证明了该框架的卓越性能,准确率达到93%,精确率达到87%,特异性达到95%,召回率达到91%。包括马修斯相关系数为0.8932在内的先进指标验证了其可靠性。所提出的框架为可扩展的高性能分类和分割建立了新的基准,为实际应用提供了强大的解决方案,并为未来与可解释人工智能和实时系统的集成铺平了道路。

  • 设计了一种集成HDBN和CAEN的新型混合框架,用于自适应特征提取和预测。

  • 提出了动态预测聚合和优化策略,增强了在不同数据场景下的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验