Suppr超能文献

使用主成分分析、遗传算法和多层感知器集成系统诊断宫颈癌

Cervical Cancer Diagnosis Using an Integrated System of Principal Component Analysis, Genetic Algorithm, and Multilayer Perceptron.

作者信息

Dweekat Odai Y, Lam Sarah S

机构信息

Department of Systems Science and Industrial Engineering, Binghamton University, Binghamton, NY 13902, USA.

出版信息

Healthcare (Basel). 2022 Oct 11;10(10):2002. doi: 10.3390/healthcare10102002.

Abstract

Cervical cancer is one of the most dangerous diseases that affect women worldwide. The diagnosis of cervical cancer is challenging, costly, and time-consuming. Existing literature has focused on traditional machine learning techniques and deep learning to identify and predict cervical cancer. This research proposes an integrated system of Genetic Algorithm (GA), Multilayer Perceptron (MLP), and Principal Component Analysis (PCA) that accurately predicts cervical cancer. GA is used to optimize the MLP hyperparameters, and the MLPs act as simulators within the GA to provide the prediction accuracy of the solutions. The proposed method uses PCA to transform the available factors; the transformed features are subsequently used as inputs to the MLP for model training. To contrast with the PCA method, different subsets of the original factors are selected. The performance of the integrated system of PCA-GA-MLP is compared with nine different classification algorithms. The results indicate that the proposed method outperforms the studied classification algorithms. The PCA-GA-MLP model achieves the best accuracy in diagnosing Hinselmann, Biopsy, and Cytology when compared to existing approaches in the literature that were implemented on the same dataset. This study introduces a robust tool that allows medical teams to predict cervical cancer in its early stage.

摘要

宫颈癌是影响全球女性的最危险疾病之一。宫颈癌的诊断具有挑战性、成本高且耗时。现有文献主要集中在传统机器学习技术和深度学习来识别和预测宫颈癌。本研究提出了一种由遗传算法(GA)、多层感知器(MLP)和主成分分析(PCA)组成的集成系统,该系统能准确预测宫颈癌。GA用于优化MLP的超参数,而MLP在GA中充当模拟器以提供解决方案的预测准确性。所提出的方法使用PCA来变换可用因素;变换后的特征随后用作MLP模型训练的输入。为了与PCA方法进行对比,选择了原始因素的不同子集。将PCA-GA-MLP集成系统的性能与九种不同的分类算法进行了比较。结果表明,所提出的方法优于所研究的分类算法。与在同一数据集上实施的文献中现有方法相比,PCA-GA-MLP模型在诊断辛塞尔曼检查、活检和细胞学检查时达到了最佳准确率。本研究引入了一种强大的工具,使医疗团队能够在宫颈癌早期进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3654/9601935/a1ca07efa8f1/healthcare-10-02002-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验