Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece.
Int J Mol Sci. 2023 May 31;24(11):9527. doi: 10.3390/ijms24119527.
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in promoters or/and in the erythroid enhancer of to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
β-地中海贫血症是全球最常见的遗传性疾病,由β-珠蛋白基因座的广泛突变引起,并与患者不遵守支持性治疗的发病率和早期死亡率相关。异基因造血干细胞移植(allo-HSCT)曾经是唯一的治愈选择,尽管需要 HLA 匹配的供体,这极大地限制了其广泛应用。基因治疗方法的发展使得将治疗性β-或γ-珠蛋白基因体外递送到患者来源的造血干细胞中,然后将经过修正的细胞移植到骨髓清除的患者中成为可能,从而导致高比例的输血独立性(地中海贫血)或疼痛危机的完全缓解(镰状细胞病-SCD)。遗传性胎儿血红蛋白持续存在(HPFH)是一种特征为γ-珠蛋白水平增加的综合征,当与β-地中海贫血或 SCD 共同遗传时,可将血红蛋白病转化为具有轻度临床表型的良性疾病。在过去十年中,精确基因组编辑工具(ZFN、TALENs、CRISPR/Cas9)的快速发展允许靶向引入突变,从而产生疾病修饰的结果。在这种情况下,基因组编辑工具已成功用于在启动子或/和红细胞增强子中引入 HPFH 样突变,以增加 HbF 表达,作为治疗β-地中海贫血的替代方法。目前对新的 HbF 调节剂(如 ZBTB7A、KLF-1、SOX6 和 ZNF410)的研究进一步扩大了可能的基因组编辑靶标范围。重要的是,基因组编辑方法最近在 SCD 和地中海贫血患者中 HbF 再激活的临床试验中达到了临床转化。这些方法显示出有前景的结果,但仍需要在长期随访研究中得到证实。