Suppr超能文献

人仿生肝微生理系统与 BIOLOGXsym 的结合,一种用于大分子的定量系统毒理学 (QST) 建模平台,提供了对托珠单抗和 GGF2 诱导的肝损伤的机制理解。

The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury.

机构信息

DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, Durham, NC 27709, USA.

Department of Computational and Systems Biology, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.

出版信息

Int J Mol Sci. 2023 Jun 2;24(11):9692. doi: 10.3390/ijms24119692.

Abstract

Biologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.

摘要

生物制剂可满足一系列未满足的临床需求,但生物制剂引起的肝损伤仍然是一个主要挑战。由于血清转氨酶和总胆红素一过性升高,cimaglermin alfa(GGF2)的开发被终止。托珠单抗已被报道可引起转氨酶一过性升高,需要频繁监测。为了评估生物制剂引起的肝损伤的临床风险,开发了一种新型定量系统毒理学建模平台 BIOLOGXsym™,该平台代表了相关的肝脏生化以及生物制剂对肝脏病理生理学的机制作用,并结合了来自人类仿生肝微生理系统的临床相关数据。来自肝小叶微生理系统的表型和机制毒性数据和代谢组学分析表明,托珠单抗和 GGF2 增加了高迁移率族蛋白 1,表明存在肝损伤和应激。托珠单抗暴露与氧化应激和细胞外/组织重塑增加有关,而 GGF2 则降低了胆汁酸分泌。BIOLOGXsym 模拟利用生理相关药代动力学建模预测的体内暴露和肝小叶微生理系统的机制毒性数据,重现了托珠单抗和 GGF2 的临床观察到的肝脏信号,表明微生理系统的机制毒性数据可以成功整合到定量系统毒理学模型中,以识别生物制剂引起的肝损伤的潜在风险,并提供对观察到的肝脏安全性信号的机制见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f254/10253699/93b59fb47c8e/ijms-24-09692-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验