Lefever Daniel E, Miedel Mark T, Pei Fen, DiStefano Johanna K, Debiasio Richard, Shun Tong Ying, Saydmohammed Manush, Chikina Maria, Vernetti Lawrence A, Soto-Gutierrez Alejandro, Monga Satdarshan P, Bataller Ramon, Behari Jaideep, Yechoor Vijay K, Bahar Ivet, Gough Albert, Stern Andrew M, Taylor D Lansing
Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Metabolites. 2022 Jun 7;12(6):528. doi: 10.3390/metabo12060528.
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence with a heterogeneous and complex pathophysiology that presents barriers to traditional targeted therapeutic approaches. We describe an integrated quantitative systems pharmacology (QSP) platform that comprehensively and unbiasedly defines disease states, in contrast to just individual genes or pathways, that promote NAFLD progression. The QSP platform can be used to predict drugs that normalize these disease states and experimentally test predictions in a human liver acinus microphysiology system (LAMPS) that recapitulates key aspects of NAFLD. Analysis of a 182 patient-derived hepatic RNA-sequencing dataset generated 12 gene signatures mirroring these states. Screening against the LINCS L1000 database led to the identification of drugs predicted to revert these signatures and corresponding disease states. A proof-of-concept study in LAMPS demonstrated mitigation of steatosis, inflammation, and fibrosis, especially with drug combinations. Mechanistically, several structurally diverse drugs were predicted to interact with a subnetwork of nuclear receptors, including pregnane X receptor (PXR; NR1I2), that has evolved to respond to both xenobiotic and endogenous ligands and is intrinsic to NAFLD-associated transcription dysregulation. In conjunction with iPSC-derived cells, this platform has the potential for developing personalized NAFLD therapeutic strategies, informing disease mechanisms, and defining optimal cohorts of patients for clinical trials.
非酒精性脂肪性肝病(NAFLD)在全球具有较高的患病率,其病理生理学异质性强且复杂,给传统的靶向治疗方法带来了障碍。我们描述了一个综合定量系统药理学(QSP)平台,该平台全面且无偏倚地定义了促进NAFLD进展的疾病状态,而非仅仅是个别基因或信号通路。与仅关注个别基因或通路不同,该QSP平台可用于预测能使这些疾病状态恢复正常的药物,并在模拟NAFLD关键特征的人肝腺泡微生理系统(LAMPS)中对预测进行实验验证。对182例患者来源的肝脏RNA测序数据集的分析产生了12个反映这些状态的基因特征。针对LINCS L1000数据库进行筛选,从而确定了预计能逆转这些特征及相应疾病状态的药物。在LAMPS中进行的概念验证研究表明,脂肪变性、炎症和纤维化得到了缓解,尤其是药物联合使用时。从机制上讲,预计几种结构各异的药物会与核受体亚网络相互作用,其中包括孕烷X受体(PXR;NR1I2),该受体已进化为既能对外源性配体又能对内源性配体作出反应,并且是NAFLD相关转录失调所固有的。结合诱导多能干细胞衍生的细胞,该平台有潜力开发个性化的NAFLD治疗策略,阐明疾病机制,并为临床试验确定最佳患者队列。