Pei Mengtian, Xie Xuze, Peng Baoyi, Chen Xinchi, Chen Yixuan, Li Ya, Wang Zonghua, Lu Guodong
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Plants (Basel). 2023 May 26;12(11):2122. doi: 10.3390/plants12112122.
The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of , , , , and genes were significantly affected by infection of rice blast fungus . Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to infection through the Me JA and SA pathway.
磷脂酰肌醇转移蛋白(PITPs)家族能够结合特定脂质,在植物生命的不同阶段发挥各种生物学功能。但PITPs在水稻中的功能尚不清楚。在本研究中,从水稻基因组中鉴定出30个PITPs,它们在理化性质、基因结构、保守结构域和亚细胞定位上存在差异。这些基因的启动子区域至少包含一种激素反应元件,如茉莉酸甲酯(Me JA)和水杨酸(SA)。此外,稻瘟病菌感染显著影响了、、、和基因的表达水平。基于这些发现,OsPITPs可能通过Me JA和SA途径参与水稻对感染的先天免疫反应。