Kuppadakkath Athira, Barreda Ángela, Ghazaryan Lilit, Bucher Tobias, Koshelev Kirill, Pertsch Thomas, Szeghalmi Adriana, Choi Duk, Staude Isabelle, Eilenberger Falk
Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Str. 15, 07745 Jena, Germany.
Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, 07743 Jena, Germany.
Nanomaterials (Basel). 2023 Jun 5;13(11):1810. doi: 10.3390/nano13111810.
The capability of tailoring the resonance wavelength of metasurfaces is important as it can alleviate the manufacturing precision required to produce the exact structure according to the design of the nanoresonators. Tuning of Fano resonances by applying heat has been theoretically predicted in the case of silicon metasurfaces. Here, we experimentally demonstrate the permanent tailoring of quasi-bound states in the continuum (quasi-BIC) resonance wavelength in an a-Si:H metasurface and quantitatively analyze the modification in the -factor with gradual heating. A gradual increment in temperature leads to a spectral shift in the resonance wavelength. With the support of ellipsometry measurements, the spectral shift resulting from the short-duration (ten minutes) heating is identified to be due to refractive index variations in the material rather than a geometric effect or amorphous/polycrystalline phase transition. In the case of quasi-BIC modes in the near-infrared, resonance wavelength could be adjusted from T = 350 °C to T = 550 °C without affecting the -factor considerably. Apart from the temperature-induced resonance trimming, large -factors can be attained at the highest analyzed temperature (T = 700 °C) in the near-infrared quasi-BIC modes. Resonance tailoring is just one of the possible applications of our results. We expect that our study is also insightful in the design of a-Si:H metasurfaces where large -factors are required at high temperatures.
调整超表面共振波长的能力很重要,因为它可以降低根据纳米谐振器设计生产精确结构所需的制造精度。理论上已预测在硅超表面的情况下通过加热来调谐法诺共振。在此,我们通过实验证明了非晶硅氢化(a-Si:H)超表面中连续态准束缚态(quasi-BIC)共振波长的永久性调整,并定量分析了随着逐渐加热 - 因子的变化。温度的逐渐升高会导致共振波长的光谱偏移。在椭偏测量的支持下,确定短时间(十分钟)加热引起的光谱偏移是由于材料中的折射率变化,而不是几何效应或非晶/多晶相变。在近红外的准BIC模式下,共振波长可以从T = 350°C调整到T = 550°C,而不会对 - 因子产生太大影响。除了温度诱导的共振微调外,在近红外准BIC模式下,在最高分析温度(T = 700°C)时可以获得较大的 - 因子。共振调整只是我们结果的可能应用之一。我们预计我们的研究对于在高温下需要大 - 因子的非晶硅氢化超表面的设计也具有启发性。