Suppr超能文献

利用无人机多光谱成像估算大麦遗传力和预测籽粒产量的远程表型特征。

Remotely Sensed Phenotypic Traits for Heritability Estimates and Grain Yield Prediction of Barley Using Multispectral Imaging from UAVs.

机构信息

Space Research and Technology Institute, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

Institute of Agriculture, Agriculture Academy, 8400 Karnobat, Bulgaria.

出版信息

Sensors (Basel). 2023 May 23;23(11):5008. doi: 10.3390/s23115008.

Abstract

This study tested the potential of parametric and nonparametric regression modeling utilizing multispectral data from two different unoccupied aerial vehicles (UAVs) as a tool for the prediction of and indirect selection of grain yield (GY) in barley breeding experiments. The coefficient of determination () of the nonparametric models for GY prediction ranged between 0.33 and 0.61 depending on the UAV and flight date, where the highest value was achieved with the DJI Phantom 4 Multispectral (P4M) image from 26 May (milk ripening). The parametric models performed worse than the nonparametric ones for GY prediction. Independent of the retrieval method and UAV, GY retrieval was more accurate in milk ripening than dough ripening. The leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fAPAR), fraction vegetation cover (fCover), and leaf chlorophyll content (LCC) were modeled at milk ripening using nonparametric models with the P4M images. A significant effect of the genotype was found for the estimated biophysical variables, which was referred to as remotely sensed phenotypic traits (RSPTs). Measured GY heritability was lower, with a few exceptions, compared to the RSPTs, indicating that GY was more environmentally influenced than the RSPTs. The moderate to strong genetic correlation of the RSPTs to GY in the present study indicated their potential utility as an indirect selection approach to identify high-yield genotypes of winter barley.

摘要

本研究利用来自两种不同无人机 (UAV) 的多光谱数据,测试了参数和非参数回归建模的潜力,作为预测和间接选择大麦育种试验中谷物产量 (GY) 的工具。非参数模型的决定系数()用于 GY 预测,范围在 0.33 到 0.61 之间,具体取决于 UAV 和飞行日期,其中使用 DJI Phantom 4 多光谱(P4M)图像在 5 月 26 日(乳熟期)获得的最高值。参数模型的 GY 预测性能不如非参数模型。与检索方法和 UAV 无关,GY 检索在乳熟期比在面团成熟期更准确。使用 P4M 图像的非参数模型,在乳熟期对叶面积指数 (LAI)、吸收的光合有效辐射分数 (fAPAR)、植被覆盖率分数 (fCover) 和叶片叶绿素含量 (LCC) 进行建模。在估计的生物物理变量中发现了基因型的显著影响,这被称为遥感表型性状 (RSPT)。与 RSPT 相比,测量的 GY 遗传力较低,除了少数例外,这表明 GY 比 RSPT 更受环境影响。本研究中 RSPT 与 GY 的中度至强遗传相关性表明,它们作为间接选择方法识别冬大麦高产品系具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c15/10255650/c54ac2d8cb8e/sensors-23-05008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验