Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.
Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.
Sensors (Basel). 2023 May 30;23(11):5194. doi: 10.3390/s23115194.
Legged robots can travel through complex scenes via dynamic foothold adaptation. However, it remains a challenging task to efficiently utilize the dynamics of robots in cluttered environments and to achieve efficient navigation. We present a novel hierarchical vision navigation system combining foothold adaptation policy with locomotion control of the quadruped robots. The high-level policy trains an end-to-end navigation policy, generating an optimal path to approach the target with obstacle avoidance. Meanwhile, the low-level policy trains the foothold adaptation network through auto-annotated supervised learning to adjust the locomotion controller and to provide more feasible foot placement. Extensive experiments in both simulation and the real world show that the system achieves efficient navigation against challenges in dynamic and cluttered environments without prior information.
腿式机器人可以通过动态立足点适应来穿越复杂场景。然而,在杂乱环境中有效地利用机器人的动力学并实现高效导航仍然是一项具有挑战性的任务。我们提出了一种新的分层视觉导航系统,将立足点适应策略与四足机器人的运动控制相结合。高层策略通过端到端导航策略进行训练,生成最优路径以避开障碍物接近目标。同时,底层策略通过自动标注的监督学习训练立足点适应网络,以调整运动控制器并提供更可行的立足点。在模拟和真实世界中的广泛实验表明,该系统在没有先验信息的情况下能够有效地应对动态和杂乱环境中的挑战进行导航。