College of Civil Engineering, Hunan University, Changsha, Hunan, China.
Environ Sci Pollut Res Int. 2023 Jul;30(33):80676-80692. doi: 10.1007/s11356-023-27888-0. Epub 2023 Jun 10.
As global warming becomes more prominent, the need to reduce carbon emissions to achieve China's carbon peak target is increasing. It is imperative to seek effective methods to predict carbon emissions and propose targeted emission reduction measures. In this paper, a comprehensive model integrating grey relational analysis (GRA), generalized regression neural network (GRNN) and fruit fly optimization algorithm (FOA) is constructed with carbon emission prediction as the research objective. Firstly, GRA is used for feature selection to find out the factors that have a strong influence on carbon emissions. Secondly, the parameter of GRNN is optimized using FOA algorithm to improve the prediction accuracy. The results show that (1) fossil energy consumption, population, urbanization rate and GDP are important factors affecting carbon emissions; (2) FOA-GRNN outperforms GRNN and back propagation neural network (BPNN), verifying the effectiveness of FOA-GRNN model for CO2 emission prediction. Finally, by analyzing the key influencing factors and combining scenario analysis with forecasting algorithms, the carbon emission trends in China for 2020-2035 are forecasted. The results can provide guidance for policy makers to set reasonable carbon emission reduction targets and adopt corresponding energy saving and emission reduction measures.
随着全球变暖问题日益突出,为实现中国碳达峰目标,减少碳排放的需求不断增加。因此,寻求有效的方法来预测碳排放并提出有针对性的减排措施势在必行。本文以碳排放量预测为研究目标,构建了一种综合模型,该模型集成了灰色关联分析(GRA)、广义回归神经网络(GRNN)和果实蝇优化算法(FOA)。首先,利用 GRA 进行特征选择,找出对碳排放量有较强影响的因素。其次,利用 FOA 算法优化 GRNN 的参数,提高预测精度。结果表明:(1)化石能源消费、人口、城市化率和 GDP 是影响碳排放的重要因素;(2)FOA-GRNN 优于 GRNN 和反向传播神经网络(BPNN),验证了 FOA-GRNN 模型在 CO2 排放预测方面的有效性。最后,通过分析关键影响因素,并结合情景分析和预测算法,对 2020-2035 年中国的碳排放趋势进行预测。研究结果可为政策制定者设定合理的碳排放减排目标以及采取相应的节能降碳措施提供指导。