Suppr超能文献

基于LWSSA自然启发式优化的MLP增强型CO排放预测模型

MLP Enhanced CO Emission Prediction Model with LWSSA Nature Inspired Optimization.

作者信息

Mussa Agoub Abdulhafith Younes, Khalifa Wagdi M S

机构信息

Cyprus Health and Social Sciences University, Mersin 10, Turkey.

出版信息

Sci Rep. 2025 Jan 13;15(1):1891. doi: 10.1038/s41598-025-85709-5.

Abstract

Environmental degradation due to the rapid increase in CO₂ emissions is a pressing global challenge, necessitating innovative solutions for accurate prediction and policy development. Machine learning (ML) techniques offer a robust approach to modeling complex relationships between various factors influencing emissions. Furthermore, ML models can learn and interpret the significance of each factor's contribution to the rise of CO. This study proposes a novel hybrid framework combining a Multi-Layer Perceptron (MLP) with an enhanced Locally Weighted Salp Swarm Algorithm (LWSSA) to address the limitations of traditional optimization techniques, such as premature convergence and stagnation in locally optimal solutions. The LWSSA improves the standard Salp Swarm Algorithm (SSA) by incorporating a Locally Weighted Mechanism (LWM) and a Mutation Mechanism (MM) for greater exploration and exploitation. The LWSSA-MLP framework achieved a prediction accuracy of 97% and outperformed traditional optimizer-based MLP models across several evaluation metrics. A permutation feature significance analysis identified global trade, coal energy, export levels, urbanization, and natural resources as the most influential factors in CO₂ emissions, offering valuable insights for targeted interventions. The study provides a reliable and scalable framework for CO₂ emission prediction, contributing to actionable strategies for sustainable development and environmental resilience.

摘要

由于二氧化碳排放量的迅速增加导致的环境退化是一个紧迫的全球挑战,需要创新的解决方案来进行准确预测和政策制定。机器学习(ML)技术为建模影响排放的各种因素之间的复杂关系提供了一种强大的方法。此外,ML模型可以学习并解释每个因素对二氧化碳上升的贡献的重要性。本研究提出了一种新颖的混合框架,将多层感知器(MLP)与增强的局部加权鹈鹕群算法(LWSSA)相结合,以解决传统优化技术的局限性,如过早收敛和陷入局部最优解的停滞状态。LWSSA通过纳入局部加权机制(LWM)和变异机制(MM)来改进标准鹈鹕群算法(SSA),以实现更大程度的探索和利用。LWSSA-MLP框架实现了97%的预测准确率,并且在多个评估指标上优于基于传统优化器的MLP模型。排列特征重要性分析确定全球贸易、煤炭能源、出口水平、城市化和自然资源是二氧化碳排放中最具影响力的因素,为有针对性的干预提供了有价值的见解。该研究为二氧化碳排放预测提供了一个可靠且可扩展的框架,有助于制定可持续发展和环境适应能力的可行策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5cc/11730343/a44ac7cc8506/41598_2025_85709_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验