考虑16S rRNA拷贝数预测的不确定性及其在细菌多样性分析中的影响。
Accounting for 16S rRNA copy number prediction uncertainty and its implications in bacterial diversity analyses.
作者信息
Gao Yingnan, Wu Martin
机构信息
Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA.
出版信息
ISME Commun. 2023 Jun 10;3(1):59. doi: 10.1038/s43705-023-00266-0.
16S rRNA gene copy number (16S GCN) varies among bacterial species and this variation introduces potential biases to microbial diversity analyses using 16S rRNA read counts. To correct the biases, methods have been developed to predict 16S GCN. A recent study suggests that the prediction uncertainty can be so great that copy number correction is not justified in practice. Here we develop RasperGade16S, a novel method and software to better model and capture the inherent uncertainty in 16S GCN prediction. RasperGade16S implements a maximum likelihood framework of pulsed evolution model and explicitly accounts for intraspecific GCN variation and heterogeneous GCN evolution rates among species. Using cross-validation, we show that our method provides robust confidence estimates for the GCN predictions and outperforms other methods in both precision and recall. We have predicted GCN for 592605 OTUs in the SILVA database and tested 113842 bacterial communities that represent an exhaustive and diverse list of engineered and natural environments. We found that the prediction uncertainty is small enough for 99% of the communities that 16S GCN correction should improve their compositional and functional profiles estimated using 16S rRNA reads. On the other hand, we found that GCN variation has limited impacts on beta-diversity analyses such as PCoA, NMDS, PERMANOVA and random-forest test.
16S核糖体RNA基因拷贝数(16S GCN)在细菌物种之间存在差异,这种差异会给使用16S rRNA读数进行的微生物多样性分析带来潜在偏差。为了校正这些偏差,人们已经开发出预测16S GCN的方法。最近的一项研究表明,预测的不确定性可能非常大,以至于在实际应用中进行拷贝数校正并不合理。在此,我们开发了RasperGade16S,这是一种新颖的方法和软件,用于更好地建模和捕捉16S GCN预测中的固有不确定性。RasperGade16S实现了脉冲进化模型的最大似然框架,并明确考虑了种内GCN变异和物种间GCN进化速率的异质性。通过交叉验证,我们表明我们的方法为GCN预测提供了可靠的置信估计,并且在精度和召回率方面均优于其他方法。我们已经预测了SILVA数据库中592605个操作分类单元(OTU)的GCN,并测试了113842个细菌群落,这些群落代表了工程和自然环境中详尽且多样的列表。我们发现,对于99%的群落而言,预测不确定性足够小,以至于16S GCN校正应该能够改善使用16S rRNA读数估计的群落组成和功能概况。另一方面,我们发现GCN变异对诸如主坐标分析(PCoA)、非度量多维尺度分析(NMDS)、置换多变量方差分析(PERMANOVA)和随机森林检验等β多样性分析的影响有限。
相似文献
Sci Rep. 2024-6-20
Appl Environ Microbiol. 2023-5-31
BMC Microbiol. 2016-11-14
引用本文的文献
Microorganisms. 2025-8-9
Glob Chang Biol. 2025-7
Front Microbiol. 2025-6-24
Brief Bioinform. 2025-7-2
本文引用的文献
Trends Microbiol. 2021-1
Proc Natl Acad Sci U S A. 2017-11-7
Bioinformatics. 2018-3-15
PLoS Comput Biol. 2016-7-12