Suppr超能文献

同一硬币的两面:不同的神经解剖学模式预测成年人的晶体智力和流体智力。

Two sides of the same coin: distinct neuroanatomical patterns predict crystallized and fluid intelligence in adults.

作者信息

Xu Hui, Xu Cheng, Yang Zhenliang, Bai Guanghui, Yin Bo

机构信息

Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada.

出版信息

Front Neurosci. 2023 May 25;17:1199106. doi: 10.3389/fnins.2023.1199106. eCollection 2023.

Abstract

BACKGROUND

Crystallized intelligence (Gc) and fluid intelligence (Gf) are regarded as distinct intelligence components that statistically correlate with each other. However, the distinct neuroanatomical signatures of Gc and Gf in adults remain contentious.

METHODS

Machine learning cross-validated elastic net regression models were performed on the Human Connectome Project Young Adult dataset ( = 1089) to characterize the neuroanatomical patterns of structural magnetic resonance imaging variables that are associated with Gc and Gf. The observed relationships were further examined by linear mixed-effects models. Finally, intraclass correlations were computed to examine the similarity of the neuroanatomical correlates between Gc and Gf.

RESULTS

The results revealed distinct multi-region neuroanatomical patterns predicted Gc and Gf, respectively, which were robust in a held-out test set ( = 2.40, 1.97%, respectively). The relationship of these regions with Gc and Gf was further supported by the univariate linear mixed effects models. Besides that, Gc and Gf displayed poor neuroanatomical similarity.

CONCLUSION

These findings provided evidence that distinct machine learning-derived neuroanatomical patterns could predict Gc and Gf in healthy adults, highlighting differential neuroanatomical signatures of different aspects of intelligence.

摘要

背景

晶体智力(Gc)和流体智力(Gf)被视为不同的智力成分,它们在统计学上相互关联。然而,成年人中Gc和Gf独特的神经解剖学特征仍存在争议。

方法

在人类连接组计划青年成人数据集(n = 1089)上进行机器学习交叉验证弹性网回归模型,以表征与Gc和Gf相关的结构磁共振成像变量的神经解剖学模式。通过线性混合效应模型进一步检验观察到的关系。最后,计算组内相关性以检验Gc和Gf之间神经解剖学相关性的相似性。

结果

结果显示分别预测Gc和Gf的不同多区域神经解剖学模式,在一个保留测试集中具有稳健性(分别为R = 2.40,1.97%)。单变量线性混合效应模型进一步支持了这些区域与Gc和Gf的关系。除此之外,Gc和Gf显示出较差的神经解剖学相似性。

结论

这些发现提供了证据,表明不同的机器学习衍生神经解剖学模式可以预测健康成年人的Gc和Gf,突出了智力不同方面的差异神经解剖学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db5c/10249781/cc2f19f1dfa5/fnins-17-1199106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验