Chu Pei-Yu, Hsieh Han-Yun, Chung Pei-Shan, Wang Pai-Wen, Wu Ming-Chung, Chen Yin-Quan, Kuo Jean-Cheng, Fan Yu-Jui
College of Biomedical Engineering, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.
Institute of Applied Mechanics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
iScience. 2023 May 19;26(6):106927. doi: 10.1016/j.isci.2023.106927. eCollection 2023 Jun 16.
The objective of this study is to develop a device to mimic a microfluidic system of human arterial blood vessels. The device combines fluid shear stress (FSS) and cyclic stretch (CS), which are resulting from blood flow and blood pressure, respectively. The device can reveal real-time observation of dynamic morphological change of cells in different flow fields (continuous flow, reciprocating flow and pulsatile flow) and stretch. We observe the effects of FSS and CS on endothelial cells (ECs), including ECs align their cytoskeleton proteins with the fluid flow direction and paxillin redistribution to the cell periphery or the end of stress fibers. Thus, understanding the morphological and functional changes of endothelial cells on physical stimuli can help us to prevent and improve the treatment of cardiovascular diseases.
本研究的目的是开发一种装置,以模拟人体动脉血管的微流体系统。该装置结合了分别由血流和血压产生的流体剪切应力(FSS)和周期性拉伸(CS)。该装置可以实时观察不同流场(连续流、往复流和脉动流)和拉伸中细胞的动态形态变化。我们观察了FSS和CS对内皮细胞(ECs)的影响,包括ECs使细胞骨架蛋白与流体流动方向对齐,以及桩蛋白重新分布到细胞周边或应力纤维末端。因此,了解物理刺激下内皮细胞的形态和功能变化有助于我们预防和改善心血管疾病的治疗。