Suppr超能文献

一种用于微流控细胞拉伸检测的开源、电池供电、低成本双通道气动脉冲发生器。

An open-source, battery-powered, low-cost, and dual-channel pneumatic pulse generator for microfluidic cell-stretch assays.

作者信息

Olson Samuel, Finley McKenna, Thakur Raviraj

机构信息

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, USA.

出版信息

HardwareX. 2024 Oct 11;20:e00595. doi: 10.1016/j.ohx.2024.e00595. eCollection 2024 Dec.

Abstract

Cells in the body are regularly subjected to mechanical forces that influence their biological fate in terms of morphology, gene expression, and differentiation. The current gold standard method to replicate these effects in vitro is to culture cells on devices with elastic substrates and to impart mechanical stretch using mechanical or pneumatic pull-push methods. Microfluidic device designs offer several advantages in this context for general uniform and controlled stretching. However, the experimental setups are bulky, not user-friendly, and often involve several components that reside outside of the tissue culture incubator. Given the wide utility of mechanical stimulation in in-vitro research, our aim was to create a turn-key research tool that bioengineers can deploy in their cell-stretch assays, without having to deal with the complexity and nuances of ad hoc experimental setups. Here, we present an open-source, battery-powered, dual-channel cyclic pneumatic pulse generator box that can reside within an incubator and is compatible with custom microfluidic cell stretch devices. Our method depends on generating pressure-vacuum pulses simply using a linear miniature pneumatic air cylinder actuated using a continuous servo motor. To the best our knowledge, this is a first example of a completely battery-powered, standalone system that doesn't have any peripherals residing out of the incubator. We provide a detailed list of different components as well as the step-by-step assembly process. We validate its performance in a cell stretch assay using a commercially available microfluidic chip. Our results show an acute stimulation of cyclic stretching over 8 h on human umbilical vein endothelial cells (HUVECs) resulted in preferential alignment of cells perpendicular to the axis of stretch.

摘要

体内的细胞经常受到机械力的作用,这些机械力在细胞形态、基因表达和分化方面影响着它们的生物学命运。目前在体外复制这些效应的金标准方法是将细胞培养在具有弹性基质的装置上,并使用机械或气动推拉方法施加机械拉伸。在这种情况下,微流控装置设计在实现一般均匀且可控的拉伸方面具有几个优点。然而,实验装置体积庞大,不便于用户使用,并且通常涉及位于组织培养箱外部的几个组件。鉴于机械刺激在体外研究中的广泛应用,我们的目标是创建一种交钥匙研究工具,生物工程师可以在他们的细胞拉伸试验中部署该工具,而无需处理临时实验装置的复杂性和细微差别。在此,我们展示了一种开源的、电池供电的双通道循环气动脉冲发生器箱,它可以放置在培养箱内,并与定制的微流控细胞拉伸装置兼容。我们的方法仅依靠使用由连续伺服电机驱动的线性微型气缸来产生压力 - 真空脉冲。据我们所知,这是一个完全由电池供电的独立系统的首个示例,该系统没有任何位于培养箱外部的外围设备。我们提供了不同组件的详细列表以及逐步组装过程。我们使用市售的微流控芯片在细胞拉伸试验中验证了其性能。我们的结果表明,在人脐静脉内皮细胞(HUVECs)上进行8小时的循环拉伸急性刺激导致细胞优先沿垂直于拉伸轴的方向排列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2749/11525163/efe0e200980f/ga1.jpg

相似文献

1
An open-source, battery-powered, low-cost, and dual-channel pneumatic pulse generator for microfluidic cell-stretch assays.
HardwareX. 2024 Oct 11;20:e00595. doi: 10.1016/j.ohx.2024.e00595. eCollection 2024 Dec.
2
Controlling Biomedical Devices Using Pneumatic Logic.
Ann Biomed Eng. 2025 Jan;53(1):207-216. doi: 10.1007/s10439-024-03628-4. Epub 2024 Oct 8.
3
Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology.
PLoS One. 2022 Jun 3;17(6):e0268570. doi: 10.1371/journal.pone.0268570. eCollection 2022.
4
A miniaturized 3D printed pressure regulator (µPR) for microfluidic cell culture applications.
Sci Rep. 2022 Jun 24;12(1):10769. doi: 10.1038/s41598-022-15087-9.
5
A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
Biomaterials. 2021 Aug;275:120957. doi: 10.1016/j.biomaterials.2021.120957. Epub 2021 Jun 6.
6
A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
Lab Chip. 2016 Jun 21;16(12):2339-48. doi: 10.1039/c6lc00361c. Epub 2016 May 27.
7
Remodeling of an microvessel exposed to cyclic mechanical stretch.
APL Bioeng. 2021 Apr 2;5(2):026102. doi: 10.1063/5.0010159. eCollection 2021 Jun.
8
Research of control method for pneumatic control of pneumatic microchips.
SLAS Technol. 2022 Oct;27(5):290-301. doi: 10.1016/j.slast.2022.06.002. Epub 2022 Jun 10.

本文引用的文献

1
Development of vessel mimicking microfluidic device for studying mechano-response of endothelial cells.
iScience. 2023 May 19;26(6):106927. doi: 10.1016/j.isci.2023.106927. eCollection 2023 Jun 16.
2
The CaT stretcher: An open-source system for delivering uniaxial strain to cells and tissues (CaT).
Front Bioeng Biotechnol. 2022 Oct 18;10:959335. doi: 10.3389/fbioe.2022.959335. eCollection 2022.
3
Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration.
Sensors (Basel). 2022 Sep 13;22(18):6889. doi: 10.3390/s22186889.
4
A low-cost uniaxial cell stretcher for six parallel wells.
HardwareX. 2020 Dec 9;9:e00162. doi: 10.1016/j.ohx.2020.e00162. eCollection 2021 Apr.
5
Open-source colorimeter assembled from laser-cut plates and plug-in circuits.
HardwareX. 2020 Dec 28;9:e00161. doi: 10.1016/j.ohx.2020.e00161. eCollection 2021 Apr.
6
Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer.
Bioact Mater. 2021 Dec 28;15:288-304. doi: 10.1016/j.bioactmat.2021.12.010. eCollection 2022 Sep.
7
An Microfluidic Alveolus Model to Study Lung Biomechanics.
Front Bioeng Biotechnol. 2022 Feb 18;10:848699. doi: 10.3389/fbioe.2022.848699. eCollection 2022.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验