Suppr超能文献

基于改进粒子群算法和灰色决策的掘进机铲板参数多目标优化

Multiobjective optimization of roadheader shovel-plate parameters based on improved particle swarm optimization and grey decision.

机构信息

School of Mechanical and Electronic Engineering, Suzhou University, Suzhou, China.

School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China.

出版信息

Sci Prog. 2023 Apr-Jun;106(2):368504231180089. doi: 10.1177/00368504231180089.

Abstract

The development of tunneling equipment still lags behind, limiting rapid and accurate tunneling and restricting efficient production in coal mines. Thus, improving the reliability and design of roadheaders becomes essential. As the shovel plate is an essential part of a roadheader, improving its parameters can increase the roadheader performance. The parameter optimization of roadheader shovel plate is multi-objective optimization. Because of conventional multiobjective optimization requires strong prior knowledge, often provides low-quality results, and presents vulnerability to initialization and other shortcomings when used in practice. We propose an improved particle swarm optimization (PSO) algorithm that takes the minimum Euclidean distance from a base value as the evaluation criterion for global and individual extreme values. The improved algorithm enables multiobjective parallel optimization by providing a non-inferior solution set. Then, the optimal solution is searched in this set using grey decision to obtain the optimal solution. To validate the proposed method, the multiobjective optimization problem of the shovel-plate parameters is formulated for its solution. Before optimization shovel-plate most important parameters is the width of the shovel plate  = 3.2 m, is the inclination angle of the shovel plate and  = ,19°. When doing optimization, set accelerated factor , population size   =  20, and maximum number of iterations   =  100. In addition, speed was restricted by , and inertia factor was dynamic and linearly decreasing, , with and . In addition, and were set randomly in [0, 1], while optimization degree was set to 30%. And then we executed the improved PSO, obtaining 2000 non-inferior solutions. Apply grey decision to find the optimal solution. The optimal roadheader shovel-plate parameters are   =  3.144 m and  = 16.88°. Comparative analysis is made before and after optimization, the optimized parameters were substituted into the model and simulated. Obtained that the optimized parameters of shovel-plate can reduce the mass of the shovel plate decreases by 14.3%, while the propulsive resistance decreases by 6.62%, and the load capacity increases by 3.68%. Thus jointly achieving the optimization goals of reducing the propulsive resistance while increasing the load capacity. The feasibility of the proposed multiobjective optimization method with improved particle swarm optimization and grey decision is verified, and the method can provide convenient multiobjective optimization in engineering practice.

摘要

隧道设备的发展仍然滞后,限制了煤矿的快速、准确掘进和高效生产。因此,提高掘进机的可靠性和设计水平至关重要。由于截割头是掘进机的重要组成部分,因此优化其参数可以提高掘进机的性能。掘进机截割头的参数优化是一个多目标优化问题。由于传统的多目标优化需要很强的先验知识,往往提供低质量的结果,并且在实际应用中容易受到初始化等因素的影响。因此,我们提出了一种改进的粒子群优化(PSO)算法,该算法以与基准值的最小欧几里得距离作为全局极值和个体极值的评价标准。该改进算法通过提供非劣解集来实现多目标并行优化。然后,在该集合中使用灰色决策搜索最优解,以获得最优解。为了验证所提出的方法,对截割头参数的多目标优化问题进行了求解。在优化之前,截割头最重要的参数为截割头宽度=3.2m,截割头倾角=。在进行优化时,设置加速因子,种群规模=20,最大迭代次数=100。此外,速度受到限制,惯性因子是动态的且线性递减的,,其中和。此外,和随机设置为[0,1],而优化度设置为 30%。然后,我们执行了改进的 PSO,得到了 2000 个非劣解。应用灰色决策找到最优解。最优掘进机截割头参数为=3.144m 和=16.88°。优化前后进行对比分析,将优化后的参数代入模型并进行模拟。得到优化后的截割头参数可使截割头质量降低 14.3%,同时推进阻力降低 6.62%,承载能力提高 3.68%。从而实现了降低推进阻力的同时增加承载能力的优化目标。验证了基于改进粒子群算法和灰色决策的多目标优化方法的可行性,该方法可为工程实践提供便捷的多目标优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b56a/10358526/347dd9150d42/10.1177_00368504231180089-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验