Department of Human Development and Quantitative Methodology, University of Maryland.
Psychol Methods. 2024 Apr;29(2):262-286. doi: 10.1037/met0000477. Epub 2022 Apr 11.
Drawing upon recent developments in structural equation modeling, the current study presents an analytical framework for addressing research questions in which, rather than focusing on means, it is intraindividual (or intragroup) variability that is of direct research interest. Beyond merely serving as an alternative to existing multilevel modeling approaches, this framework allows for extensions to accommodate a variety of complex research scenarios by parameterizing variability as a latent variable that can in turn be embedded within a broader covariance and mean structure involving other observed and/or latent variables. The estimation procedures and parameter interpretation for the latent random variability models are discussed. The versatility of the proposed methods is demonstrated through four empirical examples. The Mplus, BUGS, and Stan model syntax for the illustrative examples are supplied to facilitate the application of the methods. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
本研究借鉴结构方程建模的最新进展,提出了一个分析框架,用于解决研究问题,其中,直接研究兴趣在于个体内(或组内)的变异性,而不是集中于均值。除了作为现有多层次建模方法的替代方法之外,该框架还通过将变异性参数化为潜在变量来进行扩展,从而可以将其嵌入更广泛的协方差和均值结构中,其中涉及其他观察到的和/或潜在变量。本文讨论了潜在随机变异性模型的估计程序和参数解释。通过四个实证示例展示了所提出方法的多功能性。为了便于方法的应用,提供了用于说明性示例的 Mplus、BUGS 和 Stan 模型语法。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。