Li Teng, Li Jiali, Bo Luyu, Pei Zhe, Shen Liang, Cheng Jiangtao, Tian Zhenhua, Du Yingshan, Cai Bowen, Sun Chuangchuang, Brooks Michael R, Albert Pan Y
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
Department of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA.
Adv Mater Technol. 2024 Sep 18;9(18). doi: 10.1002/admt.202400564. Epub 2024 Jun 22.
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery-powered, to generate an acoustic vortex with a ring-shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high-energy ring. Moreover, our vortex tweezers system facilitates contactless, multi-mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, we anticipate that our tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio-samples in biomedical and biochemical research.
基于光、电、磁和声场的镊子在非接触式物体操控方面显示出巨大潜力。然而,目前用于操控毫米级物体(如液滴、颗粒和小动物)的镊子在平移分辨率、范围和路径复杂性方面存在局限性。在此,我们介绍一种新型声涡镊子系统,它利用独特的机载声涡末端执行器与三自由度(DoF)线性运动平台集成,实现对毫米级物体的非接触、多模式、可编程操控。声涡末端执行器利用级联圆形声学阵列(该阵列便于携带且由电池供电)产生具有环形能量模式的声涡。该涡旋施加声辐射力以捕获并使物体在其中心旋转,同时通过其高能环排斥其他材料来保护该物体。此外,我们的涡旋镊子系统便于进行非接触、多模式、可编程的物体冲浪,这在涉及捕获、排斥和旋转颗粒、沿复杂路径平移颗粒、引导颗粒绕过障碍物、平移和旋转含有斑马鱼幼虫的液滴以及合并液滴的实验中得到了证明。凭借这些能力,我们预计我们的镊子系统将成为生物医学和生物化学研究中对液滴、颗粒和生物样本进行自动化、非接触处理的有价值工具。