文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鼩鼱基因组学关联牙齿的确定性和非确定性生长。

Bank vole genomics links determinate and indeterminate growth of teeth.

机构信息

Baruch College, City University of New York, One Bernard Baruch Way, New York, NY, 10010, USA.

The Graduate Center, City University of New York, 365 Fifth Ave, New York, NY, 10016, USA.

出版信息

BMC Genomics. 2024 Oct 30;25(1):1000. doi: 10.1186/s12864-024-10901-2.


DOI:10.1186/s12864-024-10901-2
PMID:39472825
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11523675/
Abstract

BACKGROUND: Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS: We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS: Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.

摘要

背景:不断生长的牙齿是哺乳动物进化的一个重要创新,然而,干细胞对连续生长的基因调控仍不完全了解。负责牙冠生长的牙干细胞在牙根形成时丧失。启动这种丧失的遗传信号很难用老鼠的不断生长的切牙和生根的磨牙(最常见的哺乳动物牙齿模型物种)进行研究,因为根形成的信号与牙齿大小和形状的模式(即尖峰模式)的信号重叠。田鼠(仓鼠科,啮齿目,Glire)进化出了生根和无根的磨牙,同时保持了相似的大小和形状,为研究根提供了替代模型。

结果:我们组装了田鼠的 Myodes glareolus 的从头基因组,并在 Glire(啮齿目和兔形目)的广泛系统发育背景下进行了基因组和转录组分析,以评估牙齿形成基因的差异选择和进化。田鼠和老鼠胚胎磨牙发育的批量转录组比较表明,基因表达水平总体上是保守的,物种特异性差异对应于田鼠磨牙的加速和更广泛的模式。我们利用该进化枝中无生根磨牙的趋同进化来研究可能导致无生根磨牙进化的变化。我们确定了 15 个牙齿基因的基因座发生了变化,6 个牙齿基因在Glires 中经历了正选择,其中两个基因在无生根磨牙的物种中经历了正选择,即 Dspp 和 Aqp1。与田鼠相比,无生根磨牙的草原田鼠的这两个基因的表达都减少了,这支持了正选择的存在,并可能是根形成差异的基础。

结论:我们的研究结果支持Glires 中牙齿基因的持续进化,并确定了根形成机制研究的候选基因。使用田鼠作为模型物种的比较研究可以揭示不断生长的磨牙趋同进化的复杂进化背景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/326aacdef004/12864_2024_10901_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/13df7d365d62/12864_2024_10901_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/6535628bc5d3/12864_2024_10901_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/44b11cbecd84/12864_2024_10901_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/d1548263788f/12864_2024_10901_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/2274ec9c96aa/12864_2024_10901_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/8b0c1283dafb/12864_2024_10901_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/017a90e0fd26/12864_2024_10901_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/326aacdef004/12864_2024_10901_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/13df7d365d62/12864_2024_10901_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/6535628bc5d3/12864_2024_10901_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/44b11cbecd84/12864_2024_10901_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/d1548263788f/12864_2024_10901_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/2274ec9c96aa/12864_2024_10901_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/8b0c1283dafb/12864_2024_10901_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/017a90e0fd26/12864_2024_10901_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f04/11523675/326aacdef004/12864_2024_10901_Fig8_HTML.jpg

相似文献

[1]
Bank vole genomics links determinate and indeterminate growth of teeth.

BMC Genomics. 2024-10-30

[2]
Vole genomics links determinate and indeterminate growth of teeth.

bioRxiv. 2024-6-22

[3]
Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography.

Proc Natl Acad Sci U S A. 2000-12-19

[4]
Mechanical constraint from growing jaw facilitates mammalian dental diversity.

Proc Natl Acad Sci U S A. 2017-8-14

[5]
Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster).

Int J Oral Sci. 2015-3-23

[6]
Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions.

Dev Genes Evol. 1999-8

[7]
Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires.

Gene. 2002-7-10

[8]
Development of genomic resources for the prairie vole (Microtus ochrogaster): construction of a BAC library and vole-mouse comparative cytogenetic map.

BMC Genomics. 2010-1-28

[9]
Origin and developmental fate of vestigial tooth primordia in the upper diastema of the field vole (Microtus agrestis, Rodentia).

Arch Oral Biol. 2005-4

[10]
Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe.

Mol Phylogenet Evol. 2015-1

本文引用的文献

[1]
The developmental basis for scaling of mammalian tooth size.

Proc Natl Acad Sci U S A. 2023-6-20

[2]
Organoids from mouse molar and incisor as new tools to study tooth-specific biology and development.

Stem Cell Reports. 2023-5-9

[3]
Plasticity of Dental Cell Types in Development, Regeneration, and Evolution.

J Dent Res. 2023-6

[4]
Paleoproteomics.

Chem Rev. 2022-8-24

[5]
Making sense of the linear genome, gene function and TADs.

Epigenetics Chromatin. 2022-1-29

[6]
Chromosomal neighbourhoods allow identification of organ specific changes in gene expression.

PLoS Comput Biol. 2021-9

[7]
Cell dynamics in Hertwig's epithelial root sheath are regulated by β-catenin activity during tooth root development.

J Cell Physiol. 2021-7

[8]
System-level analyses of keystone genes required for mammalian tooth development.

J Exp Zool B Mol Dev Evol. 2021-1

[9]
Runx2 Regulates Mouse Tooth Root Development Via Activation of WNT Inhibitor NOTUM.

J Bone Miner Res. 2020-11

[10]
Patterns of gene evolution following duplications and speciations in vertebrates.

PeerJ. 2020-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索