Suppr超能文献

半导体纳米晶体:揭示不同晶面背后的化学奥秘。

Semiconductor Nanocrystals: Unveiling the Chemistry behind Different Facets.

机构信息

Department of Energy Science (DOES) and Center for Artificial Atoms, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea.

Sungkyunkwan Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 16419, South Korea.

出版信息

Acc Chem Res. 2023 Jul 4;56(13):1756-1765. doi: 10.1021/acs.accounts.3c00123. Epub 2023 Jun 23.

Abstract

ConspectusDeveloping colloidal semiconductor nanocrystals with high-quality optoelectronic properties and precise processability relies on achieving complete mastery over the surface characteristics of nanocrystals (NCs). This requires precise engineering of the ligand-NC surface interactions, which poses a challenge due to the complex reactivity of the multiple binding sites across the entire surface. Accordingly, recent progress has been made by strategically combining well-defined surface models with quantitative surface reactions to advance our understanding and manipulation of NC surface chemistry. Our lab has contributed to this progress by developing a size-dependent shape model of IV-VI NCs, gaining insights into their unique facet-specific chemistry, and developing a systematic ligand modification strategy for target applications. Furthermore, we have created well-defined facets in III-V NCs via a co-passivation strategy, addressing the previously lacking specific shapes.This Account is divided into three parts. First, we discuss the complexities involved in comprehensively understanding the nanocrystal surface structure at the atomistic level. We explain why we focused on well-defined NCs with a large exciton Bohr radius to explore facets, an essential aspect of surface heterogeneity across the entire NC. Second, we present our work on one of the most studied nanocrystals, IV-VI materials, and how facet-specific surface chemistry has led to a meaningful understanding and control of the NC's surface. We discovered a size-dependent facet distribution in IV-VI NCs and suggested facet-specific surface chemistry to improve the photophysical properties of NCs. We further modulate the electronic properties of NC assemblies for efficient optoelectronic applications. Third, we describe our recent success in achieving well-defined facets and their facet-specific chemistry in III-V NCs, which have yet to be explored as much as classical II-VI or IV-VI materials. We explain how controlling the surfaces in III-V NCs has been challenging. We present a precise growth platform for the geometric modulation of NCs, which can be further explored for shape-dependent exciton behavior and surface reactivities.Taken together, we present a compelling case for utilizing facet-specific chemistry as a platform for mechanistic investigation and morphology exploration, which can pave the way for developing high-quality and precisely designed NCs for optoelectronic technologies, unlocking new multidisciplinary applications.

摘要

概述

开发具有高质量光电性能和精确加工性能的胶体半导体纳米晶体,需要完全掌握纳米晶体(NCs)的表面特性。这需要对配体-NC 表面相互作用进行精确工程设计,由于整个表面上多个结合位点的复杂反应性,这是一个挑战。因此,通过策略性地将明确定义的表面模型与定量表面反应相结合,最近在推进我们对 NC 表面化学的理解和控制方面取得了进展。我们实验室通过开发 IV-VI NC 的尺寸相关形状模型,深入了解其独特的各向异性化学性质,并开发针对目标应用的系统配体修饰策略,为这一进展做出了贡献。此外,我们通过共钝化策略在 III-V NC 中创建了明确定义的晶面,解决了以前缺乏特定形状的问题。

本账户分为三个部分。首先,我们讨论了在原子水平上全面理解纳米晶体表面结构的复杂性。我们解释了为什么我们专注于具有大激子玻尔半径的明确定义的 NC 来探索晶面,这是整个 NC 表面异质性的一个重要方面。其次,我们介绍了我们在最受研究的纳米晶体之一 IV-VI 材料方面的工作,以及晶面特异性表面化学如何导致对 NC 表面的有意义的理解和控制。我们发现 IV-VI NC 中存在尺寸依赖性的晶面分布,并提出了晶面特异性表面化学来改善 NC 的光物理性质。我们进一步调制 NC 组装体的电子性质,以实现高效的光电应用。第三,我们描述了我们最近在 III-V NC 中实现明确定义的晶面及其晶面特异性化学的成功,这方面与经典的 II-VI 或 IV-VI 材料相比还没有得到充分探索。我们解释了控制 III-V NC 表面的挑战性。我们提出了一个精确的生长平台,用于 NC 的几何调制,可以进一步探索形状依赖性激子行为和表面反应性。

综上所述,我们提出了一个强有力的案例,即利用晶面特异性化学作为机制研究和形态探索的平台,这为开发用于光电技术的高质量和精确设计的 NC 铺平了道路,为新的多学科应用开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验