Suppr超能文献

胶体纳米晶表面配体的库设计。

Library Design of Ligands at the Surface of Colloidal Nanocrystals.

机构信息

CNR NANOTEC, Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy.

出版信息

Acc Chem Res. 2020 Aug 18;53(8):1458-1467. doi: 10.1021/acs.accounts.0c00204. Epub 2020 Jul 21.

Abstract

Surfaces-and interfaces-are ubiquitous at the nanoscale. Their relevance to nanoscience and nanotechnology is therefore inherent. Colloidal inorganic nanocrystals (NCs), which can show more than a half of their atoms at the surface, are paradigmatic of the role of surfaces in determining materials' form and functions. Therefore, colloidal NCs may be regarded as soluble surfaces, allowing convenient study of ensemble structure and properties in the solution phase.Colloidal NCs commonly bear chemical species at their surface. Such species (generally referred to as ligands) are introduced already in the synthetic procedures and are added postsynthesis in surface chemistry modification (ligand exchange) reactions. Ligands (i) affect the reactivity and diffusion of the synthetic precursors, (ii) mediate NC interactions with the surroundings, and (iii) contribute to the overall electronic structure. In principle, a vast amount of ligands, as large as our imagination, could be used to coordinate the surface of colloidal NCs. In practice and despite the plethora of studies on NC surface chemistry, a relatively limited number of ligands have been explored. In addition, the importance of designing a set of ligands with tailored features (a ligand library), which may permit comprehensive discussion and explanation of the role of surfaces in the NC structure and properties, is often overlooked. Ligand libraries may also foster heuristic access to novel, unexpected observations.Here, the rational design of ligand libraries is discussed, suggesting that it may be a general method to advance knowledge on colloidal NCs and nanomaterials at large.First, a general ligand framework is introduced. The main subunits are identified: ligands are constituted by a binding group and a pendant moiety, bearing functional substituent groups. On this basis, ligand binding at the NC surface is discussed borrowing concepts from coordination chemistry. Dynamic equilibria at the NC surface are highlighted, revealing the compromise between forming and breaking bonds at interfaces and its intricate interplay with the surroundings. Tailoring of the ligand subunits may impart functions to the whole ligand, eventually transposable to the ligated NC.On these bases, it is shown how ligand design may be exploited to (i) exert control on the size and shape of the NCs, (ii) determine NCs' dispersibility in a solvent and affect their self-assembly, and (iii) tune the NCs' optical and electronic properties. These observations point to a description of colloidal NCs as un-decomposable species: ligands may be conceived as an integral part of the overall chemical and electronic structure of the colloidal NC and should not be considered as mere appendages that weakly perturb the inorganic core features.Finally, a perspective on the ligand library design is given. Function-oriented design of the ligand subunits is foreseen as an effective strategy to explore the chemical diversity space. High-throughput screening processes by using computation may represent a valuable tool for such an exploration. The whole ligand features, which depend on the subunits, can be implemented in the final NCs, providing feedback for refined design, toward a priori materials design. Ligand libraries can be fundamental to enabling colloidal NCs as reliable luminophores and (photo)catalysts.

摘要

纳米尺度上普遍存在着表面和界面。因此,它们与纳米科学和纳米技术的相关性是固有的。胶体无机纳米晶体(NCs),其表面上的原子可以超过一半,是表面决定材料形态和功能的典型范例。因此,胶体 NCs 可以被视为可溶性表面,允许在溶液相中方便地研究整体结构和性质。胶体 NCs 通常在其表面带有化学物质。这些物质(通常称为配体)已经在合成过程中引入,并且在表面化学修饰(配体交换)反应中添加。配体(i)影响合成前体的反应性和扩散性,(ii)介导 NC 与周围环境的相互作用,和(iii)有助于整体电子结构。原则上,可以使用大量的配体,只要我们的想象力足够,就可以配位胶体 NCs 的表面。实际上,尽管对 NC 表面化学进行了大量研究,但探索的配体数量相对有限。此外,设计具有特定特征的一组配体(配体库)以允许全面讨论和解释表面在 NC 结构和性质中的作用通常被忽视。配体库还可以促进对新颖、意外观察结果的启发式访问。在这里,讨论了配体库的合理设计,表明它可能是推进胶体 NCs 和纳米材料整体知识的一般方法。首先,引入了一般的配体框架。确定了主要亚单位:配体由结合基团和悬垂部分组成,带有功能取代基。在此基础上,借用配位化学的概念讨论了 NC 表面的配体结合。突出了 NC 表面的动态平衡,揭示了形成和断裂界面处键的平衡与周围环境的复杂相互作用。配体亚单位的定制可以赋予整个配体功能,最终可转移到配位的 NC 上。在此基础上,展示了如何利用配体设计(i)控制 NC 的尺寸和形状,(ii)确定 NC 在溶剂中的分散性并影响其自组装,以及(iii)调整 NC 的光学和电子性质。这些观察结果表明,胶体 NCs 可以被描述为不可分解的物质:配体可以被视为胶体 NC 整体化学和电子结构的一个组成部分,而不应被视为仅微弱干扰无机核心特征的附属物。最后,对配体库设计进行了展望。预见了配体亚单位的面向功能的设计,这是探索化学多样性空间的有效策略。使用计算的高通量筛选过程可能是这种探索的有价值工具。整个配体特征取决于亚单位,可以在最终的 NCs 中实现,为精细设计提供反馈,实现先验材料设计。配体库可以作为胶体 NCs 作为可靠发光体和(光)催化剂的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验