Suppr超能文献

VLAD:基于任务无关 VAE 的终身异常检测。

VLAD: Task-agnostic VAE-based lifelong anomaly detection.

机构信息

AGH University of Science and Technology, Institute of Computer Science, Adama Mickiewicza 30, Krakow, 30-059, Poland.

American University, Department of Computer Science, 4400 Massachusetts Ave NW, Washington, 20016, DC, United States.

出版信息

Neural Netw. 2023 Aug;165:248-273. doi: 10.1016/j.neunet.2023.05.032. Epub 2023 May 27.

Abstract

Lifelong learning represents an emerging machine learning paradigm that aims at designing new methods providing accurate analyses in complex and dynamic real-world environments. Although a significant amount of research has been conducted in image classification and reinforcement learning, very limited work has been done to solve lifelong anomaly detection problems. In this context, a successful method has to detect anomalies while adapting to changing environments and preserving knowledge to avoid catastrophic forgetting. While state-of-the-art online anomaly detection methods are able to detect anomalies and adapt to a changing environment, they are not designed to preserve past knowledge. On the other hand, while lifelong learning methods are focused on adapting to changing environments and preserving knowledge, they are not tailored for detecting anomalies, and often require task labels or task boundaries which are not available in task-agnostic lifelong anomaly detection scenarios. This paper proposes VLAD, a novel VAE-based Lifelong Anomaly Detection method addressing all these challenges simultaneously in complex task-agnostic scenarios. VLAD leverages the combination of lifelong change point detection and an effective model update strategy supported by experience replay with a hierarchical memory maintained by means of consolidation and summarization. An extensive quantitative evaluation showcases the merit of the proposed method in a variety of applied settings. VLAD outperforms state-of-the-art methods for anomaly detection, presenting increased robustness and performance in complex lifelong settings.

摘要

终身学习代表了一种新兴的机器学习范例,旨在设计新的方法,为复杂和动态的现实环境提供准确的分析。尽管在图像分类和强化学习方面已经进行了大量研究,但在解决终身异常检测问题方面所做的工作非常有限。在这种情况下,成功的方法必须在适应不断变化的环境和保留知识以避免灾难性遗忘的同时检测异常。虽然最先进的在线异常检测方法能够检测异常并适应不断变化的环境,但它们不是为保留过去的知识而设计的。另一方面,虽然终身学习方法专注于适应不断变化的环境和保留知识,但它们不适合检测异常,并且通常需要任务标签或任务边界,而在无任务终身异常检测场景中这些是不可用的。本文提出了 VLAD,这是一种基于 VAE 的新型终身异常检测方法,能够在复杂的无任务场景中同时应对所有这些挑战。VLAD 利用了终身变化点检测的组合,以及通过经验重放支持的有效模型更新策略,辅以通过巩固和总结来维护分层记忆。广泛的定量评估展示了该方法在各种应用场景中的优势。VLAD 在异常检测方面优于最先进的方法,在复杂的终身环境中表现出更高的鲁棒性和性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验