Suppr超能文献

高级电化学电势监测,增进对电神经刺激方案的理解。

Advanced electrochemical potential monitoring for improved understanding of electrical neurostimulation protocols.

机构信息

Laboratory for Sensors, IMTEK-Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.

Laboratory for Electrical Instrumentation and Embedded Systems, IMTEK-Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.

出版信息

J Neural Eng. 2023 Jun 22;20(3). doi: 10.1088/1741-2552/acdd9d.

Abstract

Current-controlled neurostimulation is increasingly used in the clinical treatment of neurological disorders and widely applied in neural prostheses such as cochlear implants. Despite its importance, time-dependent potential traces of electrodes during microsecond-scale current pulses, especially with respect to a reference electrode (RE), are not precisely understood. However, this knowledge is critical to predict contributions of chemical reactions at the electrodes, and ultimately electrode stability, biocompatibility, and stimulation safety and efficacy.We assessed the electrochemistry of neurostimulation protocolswith Pt microelectrodes from millisecond (classical electroanalysis) to microsecond (neurostimulation) timescales. We developed a dual-channel instrumentation amplifier to include a RE in neurostimulation setups. Uniquely, we combined potential measurements with potentiostatic prepolarization to control and investigate the surface status, which is not possible in typical stimulation setups.We thoroughly validated the instrumentation and highlighted the importance of monitoring individual electrochemical electrode potentials in different configurations of neurostimulation. We investigated electrode processes such as oxide formation and oxygen reduction by chronopotentiometry, bridging the gap between milli- and microsecond timescales. Our results demonstrate how much impact on potential traces the electrode's initial surface state and electrochemical surface processes have, even on a microsecond scale.Our unique use of preconditioning in combination with stimulation reveals that interpreting potential traces with respect to electrode processes is misleading without rigorous control of the electrode's surface state. Especially, where the microenvironment is unknown, simply measuring the voltage between two electrodes cannot accurately reflect the electrode's state and processes. Potential boundaries determine charge transfer, corrosion, and alterations of the electrode/tissue interface such as pH and oxygenation, particularly in long-termuse. Our findings are relevant for all use-cases of constant-current stimulation, strongly advocating for electrochemicalinvestigations in many applications like the development of new electrode materials and stimulation methods.

摘要

目前,电流控制型神经刺激在神经疾病的临床治疗中得到了越来越多的应用,并广泛应用于耳蜗植入等神经假体。尽管它很重要,但在微秒级电流脉冲期间,电极的时变电位迹,特别是相对于参考电极(RE),还没有被精确理解。然而,这种知识对于预测电极上化学反应的贡献至关重要,最终影响电极的稳定性、生物相容性以及刺激的安全性和有效性。

我们评估了使用 Pt 微电极的神经刺激方案的电化学特性,从毫秒(经典电分析)到微秒(神经刺激)时间尺度。我们开发了双通道仪器放大器,将 RE 纳入神经刺激设置中。独特的是,我们结合了电位测量和恒电位预极化来控制和研究表面状态,这在典型的刺激设置中是不可能的。

我们彻底验证了仪器,并强调了在不同的神经刺激配置中监测单个电化学电极电位的重要性。我们通过计时电位法研究了电极过程,如氧化物形成和氧还原,弥合了毫微秒和微秒时间尺度之间的差距。我们的结果表明,即使在微秒尺度上,电极的初始表面状态和电化学表面过程对电位迹线的影响有多大。

我们独特地使用预处理与刺激相结合,揭示了如果不对电极的表面状态进行严格控制,那么根据电极过程来解释电位迹线是具有误导性的。特别是在微环境未知的情况下,仅测量两个电极之间的电压并不能准确反映电极的状态和过程。电位边界决定了电荷转移、腐蚀以及电极/组织界面的变化,如 pH 值和氧合作用,特别是在长期使用中。我们的发现与所有恒流刺激的应用案例都相关,强烈主张在许多应用中进行电化学研究,如新电极材料和刺激方法的开发。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验