Ehlich Jiří, Vašíček Čeněk, Dobeš Jan, Ruggiero Amedeo, Vejvodová Markéta, Głowacki Eric Daniel
Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, Brno 61200, Czech Republic.
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):53567-53576. doi: 10.1021/acsami.4c12268. Epub 2024 Oct 1.
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O, H, pH, HO, Cl/OCl, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of HO as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.
人们普遍认为,为了安全使用神经接口电极,应避免不可逆的法拉第反应,而倾向于电容性电荷注入。然而,在某些情况下,法拉第反应对于控制特定的(电)生理结果或用于生物传感目的可能是有益的。本研究旨在系统地描绘生物电子电极界面发生的基本法拉第反应。我们分析了生物医学植入物中最常用的电极材料——典型的铂铱(PtIr)。通过提供这些反应及其影响因素的详细指南,我们为寻求抑制或利用各种电极材料中的法拉第反应的研究人员提供了宝贵的资源。我们采用了电化学技术和直接定量方法相结合的方式,包括安培法、电位法和分光光度法测定,以测量氧、氢、pH值、过氧化氢、氯/次氯酸盐以及可溶性铂和铱离子。我们将磷酸盐缓冲盐水(PBS)与无缓冲电解质以及含有蛋白质的复杂细胞培养基进行了比较。我们的结果表明,“水窗”——无明显水电解的电位范围——因所用电解质而异。在富含氧化还原活性物质的培养基中,基本上不存在无法拉第过程的电位窗口。在阴极极化下,观察到显著的pH值升高(碱化),而在阳极,水分解与培养基中的其他过程相互竞争,阻止了普遍的酸化。我们对氧还原反应和作为副产物的过氧化氢的积累进行了定量。在低阴极极化下,PtIr能有效地使电解质脱氧,产生局部缺氧。在阳极极化下,氯氧化与析氧相互竞争,在某些条件下会产生相对较高且具有细胞毒性的次氯酸盐(OCl)浓度。这些氧化过程伴随着PtIr通过形成可溶性盐而溶解。我们的研究结果表明,对水窗的传统理解过于简单化。重要的法拉第反应,如氧还原和氯氧化,发生在水窗内部或边缘附近。此外,水窗的定义很大程度上取决于电解质组成,与培养基相比,PBS产生的结果不同。