Suppr超能文献

用于在多种应用中构建基因稳定细胞群体的模型引导基因回路设计。

Model-guided gene circuit design for engineering genetically stable cell populations in diverse applications.

作者信息

Sechkar Kirill, Steel Harrison

机构信息

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.

出版信息

J R Soc Interface. 2025 Feb;22(223):20240602. doi: 10.1098/rsif.2024.0602. Epub 2025 Feb 12.

Abstract

Maintaining engineered cell populations' genetic stability is a key challenge in synthetic biology. Synthetic genetic constructs compete with a host cell's native genes for expression resources, burdening the cell and impairing its growth. This creates a selective pressure favouring mutations which alleviate this growth defect by removing synthetic gene expression. Non-functional mutants thus spread in cell populations, eventually making them lose engineered functions. Past work has attempted to limit mutation spread by coupling synthetic gene expression to survival. However, these approaches are highly context-dependent and must be tailor-made for each particular synthetic gene circuit to be retained. By contrast, we develop and analyse a biomolecular controller which depresses mutant cell growth independently of the mutated synthetic gene's identity. Modelling shows how our design can be deployed alongside various synthetic circuits without any re-engineering of its genetic components, outperforming extant gene-specific mutation spread mitigation strategies. Our controller's performance is evaluated using a novel simulation approach which leverages resource-aware cell modelling to directly link a circuit's design parameters to its population-level behaviour. Our design's adaptability promises to mitigate mutation spread in an expanded range of applications, while our analyses provide a blueprint for using resource-aware cell models in circuit design.

摘要

维持工程细胞群体的遗传稳定性是合成生物学中的一项关键挑战。合成遗传构建体与宿主细胞的天然基因竞争表达资源,给细胞带来负担并损害其生长。这产生了一种选择压力,有利于通过去除合成基因表达来减轻这种生长缺陷的突变。因此,无功能突变体在细胞群体中扩散,最终导致它们失去工程功能。过去的工作试图通过将合成基因表达与生存联系起来来限制突变的传播。然而,这些方法高度依赖于具体情况,必须针对每个特定的合成基因电路进行定制才能保留下来。相比之下,我们开发并分析了一种生物分子控制器,它能独立于突变的合成基因的特性来抑制突变细胞的生长。建模显示了我们的设计如何能够与各种合成电路一起部署,而无需对其遗传组件进行任何重新设计,其性能优于现有的针对特定基因的突变传播缓解策略。我们使用一种新颖的模拟方法来评估控制器的性能,该方法利用资源感知细胞建模将电路的设计参数直接与其群体水平行为联系起来。我们设计的适应性有望在更广泛的应用中减轻突变传播,而我们的分析为在电路设计中使用资源感知细胞模型提供了一个蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abf2/11813585/4e76b10b82d9/rsif.2024.0602.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验