Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA.
BMC Bioinformatics. 2023 Jun 12;24(1):246. doi: 10.1186/s12859-023-05329-6.
Computational models of cell signaling networks are extremely useful tools for the exploration of underlying system behavior and prediction of response to various perturbations. By representing signaling cascades as executable Boolean networks, the previously developed rxncon ("reaction-contingency") formalism and associated Python package enable accurate and scalable modeling of signal transduction even in large (thousands of components) biological systems. The models are split into reactions, which generate states, and contingencies, that impinge on reactions; this avoids the so-called "combinatorial explosion" of system size. Boolean description of the biological system compensates for the poor availability of kinetic parameters which are necessary for quantitative models. Unfortunately, few tools are available to support rxncon model development, especially for large, intricate systems.
We present the kboolnet toolkit ( https://github.com/Kufalab-UCSD/kboolnet , complete documentation at https://github.com/Kufalab-UCSD/kboolnet/wiki ), an R package and a set of scripts that seamlessly integrate with the python-based rxncon software and collectively provide a complete workflow for the verification, validation, and visualization of rxncon models. The verification script VerifyModel.R checks for responsiveness to repeated stimulations as well as consistency of steady state behavior. The validation scripts TruthTable.R, SensitivityAnalysis.R, and ScoreNet.R provide various readouts for the comparison of model predictions to experimental data. In particular, ScoreNet.R compares model predictions to a cloud-stored MIDAS-format experimental database to provide a numerical score for tracking model accuracy. Finally, the visualization scripts allow for graphical representations of model topology and behavior. The entire kboolnet toolkit is cloud-enabled, allowing for easy collaborative development; most scripts also allow for the extraction and analysis of individual user-defined "modules".
The kboolnet toolkit provides a modular, cloud-enabled workflow for the development of rxncon models, as well as their verification, validation, and visualization. This will enable the creation of larger, more comprehensive, and more rigorous models of cell signaling using the rxncon formalism in the future.
细胞信号网络的计算模型是探索系统底层行为和预测各种干扰的反应的极其有用的工具。通过将信号级联表示为可执行的布尔网络,先前开发的 rxncon(“反应-偶然”)形式和相关的 Python 包能够在即使在大型(数千个组件)生物系统中也能准确且可扩展地对信号转导进行建模。模型分为产生状态的反应和影响反应的偶然情况;这避免了系统大小的所谓“组合爆炸”。对生物系统的布尔描述弥补了定量模型所需的动力学参数的可用性较差的问题。不幸的是,很少有工具支持 rxncon 模型的开发,特别是对于大型复杂系统。
我们提出了 kboolnet 工具包(https://github.com/Kufalab-UCSD/kboolnet,完整文档位于 https://github.com/Kufalab-UCSD/kboolnet/wiki),这是一个 R 包和一组脚本,与基于 python 的 rxncon 软件无缝集成,共同为 rxncon 模型的验证、验证和可视化提供了完整的工作流程。验证脚本 VerifyModel.R 检查对重复刺激的反应性以及稳态行为的一致性。验证脚本 TruthTable.R、SensitivityAnalysis.R 和 ScoreNet.R 为将模型预测与实验数据进行比较提供了各种输出。特别是,ScoreNet.R 将模型预测与存储在云中的 MIDAS 格式的实验数据库进行比较,为跟踪模型准确性提供了数值分数。最后,可视化脚本允许对模型拓扑和行为进行图形表示。整个 kboolnet 工具包都支持云,允许轻松进行协作开发;大多数脚本还允许提取和分析用户定义的“模块”。
kboolnet 工具包为 rxncon 模型的开发以及它们的验证、验证和可视化提供了一个模块化的、支持云的工作流程。这将使使用 rxncon 形式在未来创建更大、更全面和更严格的细胞信号模型成为可能。