Flöttmann Max, Krause Falko, Klipp Edda, Krantz Marcus
Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr, 42, Berlin 10115, Germany.
BMC Syst Biol. 2013 Jul 8;7:58. doi: 10.1186/1752-0509-7-58.
Intracellular signalling systems are highly complex, rendering mathematical modelling of large signalling networks infeasible or impractical. Boolean modelling provides one feasible approach to whole-network modelling, but at the cost of dequantification and decontextualisation of activation. That is, these models cannot distinguish between different downstream roles played by the same component activated in different contexts.
Here, we address this with a bipartite Boolean modelling approach. Briefly, we use a state oriented approach with separate update rules based on reactions and contingencies. This approach retains contextual activation information and distinguishes distinct signals passing through a single component. Furthermore, we integrate this approach in the rxncon framework to support automatic model generation and iterative model definition and validation. We benchmark this method with the previously mapped MAP kinase network in yeast, showing that minor adjustments suffice to produce a functional network description.
Taken together, we (i) present a bipartite Boolean modelling approach that retains contextual activation information, (ii) provide software support for automatic model generation, visualisation and simulation, and (iii) demonstrate its use for iterative model generation and validation.
细胞内信号系统高度复杂,使得大型信号网络的数学建模变得不可行或不切实际。布尔建模为全网络建模提供了一种可行的方法,但代价是激活的去量化和脱离上下文。也就是说,这些模型无法区分在不同背景下激活的同一组件所发挥的不同下游作用。
在此,我们用一种二分布尔建模方法来解决这个问题。简而言之,我们使用一种面向状态的方法,基于反应和偶然事件有单独的更新规则。这种方法保留了上下文激活信息,并区分通过单个组件的不同信号。此外,我们将这种方法集成到rxncon框架中,以支持自动模型生成以及迭代模型定义和验证。我们用酵母中先前绘制的MAP激酶网络对该方法进行基准测试,表明只需进行微小调整就足以生成一个功能性的网络描述。
综上所述,我们(i)提出了一种保留上下文激活信息的二分布尔建模方法,(ii)为自动模型生成、可视化和模拟提供软件支持,以及(iii)展示了其在迭代模型生成和验证中的应用。