Suppr超能文献

大豆中的雄性不育与杂交育种

Male sterility and hybrid breeding in soybean.

作者信息

Fang Xiaolong, Sun Yanyan, Li Jinhong, Li Meina, Zhang Chunbao

机构信息

Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 Guangdong China.

Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, 130033 Jilin China.

出版信息

Mol Breed. 2023 May 25;43(6):47. doi: 10.1007/s11032-023-01390-4. eCollection 2023 Jun.

Abstract

Hybrid breeding can help us to meet the challenge of feeding a growing world population with limited agricultural land. The demand for soybean is expected to grow; however, the hybrid soybean is still in the process of commercialization even though considerable progress has been made in soybean genome and genetic studies in recent years. Here, we summarize recent advances in male sterility-based breeding programs and the current status of hybrid soybean breeding. A number of male-sterile lines with cytoplasmic male sterility (CMS), genic-controlled photoperiod/thermo-sensitive male sterility, and stable nuclear male sterility (GMS) have been identified in soybean. More than 40 hybrid soybean varieties have been bred using the CMS three-line hybrid system and the cultivation of hybrid soybean is still under way. The key to accelerating hybrid soybean breeding is to increase the out-crossing rate in an economical way. This review outlines current problems with the hybrid soybean breeding systems and explores the current efforts to make the hybrid soybean a commercial success.

摘要

杂交育种有助于我们应对在有限耕地条件下养活不断增长的世界人口这一挑战。预计对大豆的需求将会增长;然而,尽管近年来大豆基因组和遗传研究取得了相当大的进展,但杂交大豆仍处于商业化进程中。在此,我们总结了基于雄性不育的育种计划的最新进展以及杂交大豆育种的现状。在大豆中已鉴定出许多具有细胞质雄性不育(CMS)、基因控制的光周期/温敏雄性不育和稳定的核雄性不育(GMS)的雄性不育系。利用CMS三系杂交系统已培育出40多个杂交大豆品种,杂交大豆的种植仍在进行中。加速杂交大豆育种的关键是以经济的方式提高异交率。本综述概述了杂交大豆育种系统目前存在的问题,并探讨了当前为使杂交大豆取得商业成功所做的努力。

相似文献

1
Male sterility and hybrid breeding in soybean.
Mol Breed. 2023 May 25;43(6):47. doi: 10.1007/s11032-023-01390-4. eCollection 2023 Jun.
2
Progress on genic male sterility gene in soybean.
Yi Chuan. 2021 Jan 20;43(1):52-65. doi: 10.16288/j.yczz.20-357.
3
Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding.
Plant Reprod. 2019 Sep;32(3):231-256. doi: 10.1007/s00497-019-00371-y. Epub 2019 May 3.
5
Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice.
Plant Reprod. 2018 Mar;31(1):3-14. doi: 10.1007/s00497-017-0310-5. Epub 2017 Nov 2.
6
Exploration and utilization of maize male sterility resources.
Yi Chuan. 2022 Feb 20;44(2):134-152. doi: 10.16288/j.yczz.21-327.
7
Environment-sensitive genic male sterility in rice and other plants.
Plant Cell Environ. 2023 Apr;46(4):1120-1142. doi: 10.1111/pce.14503. Epub 2022 Dec 19.
8
Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives.
Mol Plant. 2019 Mar 4;12(3):321-342. doi: 10.1016/j.molp.2019.01.014. Epub 2019 Jan 26.
9
Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14145-14150. doi: 10.1073/pnas.1613792113. Epub 2016 Nov 18.
10
Male sterility and fertility restoration in crops.
Annu Rev Plant Biol. 2014;65:579-606. doi: 10.1146/annurev-arplant-050213-040119. Epub 2013 Dec 2.

引用本文的文献

3
Targeted mutation of / combined with the RUBY reporter enables an efficient two-line system for hybrid seed production in .
Hortic Res. 2024 Sep 25;12(1):uhae270. doi: 10.1093/hr/uhae270. eCollection 2025 Jan.
5
Advances in Soybean Genetic Improvement.
Plants (Basel). 2024 Oct 31;13(21):3073. doi: 10.3390/plants13213073.
6
MS2/GmAMS1 encodes a bHLH transcription factor important for tapetum degeneration in soybean.
Plant Cell Rep. 2024 Aug 11;43(9):211. doi: 10.1007/s00299-024-03300-0.
7
Soybean functional genomics: bridging theory and application.
Mol Breed. 2024 Jan 12;44(1):2. doi: 10.1007/s11032-024-01446-z. eCollection 2024 Jan.
9
Advances in CRISPR/Cas9-based research related to soybean [ (Linn.) Merr] molecular breeding.
Front Plant Sci. 2023 Aug 30;14:1247707. doi: 10.3389/fpls.2023.1247707. eCollection 2023.

本文引用的文献

3
MALE STERILITY 3 encodes a plant homeodomain-finger protein for male fertility in soybean.
J Integr Plant Biol. 2022 May;64(5):1076-1086. doi: 10.1111/jipb.13242. Epub 2022 Apr 13.
4
Confirmation of GmPPR576 as a fertility restorer gene of cytoplasmic male sterility in soybean.
J Exp Bot. 2021 Dec 4;72(22):7729-7742. doi: 10.1093/jxb/erab382.
5
A single nucleotide polymorphism in an R2R3 MYB transcription factor gene triggers the male sterility in soybean ms6 (Ames1).
Theor Appl Genet. 2021 Nov;134(11):3661-3674. doi: 10.1007/s00122-021-03920-0. Epub 2021 Jul 28.
6
MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean.
Sci China Life Sci. 2021 Sep;64(9):1533-1545. doi: 10.1007/s11427-021-1973-0. Epub 2021 Jul 2.
7
MicroRNAs Involved in Regulatory Cytoplasmic Male Sterility by Analysis RNA-seq and Small RNA-seq in Soybean.
Front Genet. 2021 May 12;12:654146. doi: 10.3389/fgene.2021.654146. eCollection 2021.
8
Time to Integrate Pollinator Science into Soybean Production.
Trends Ecol Evol. 2021 Jul;36(7):573-575. doi: 10.1016/j.tree.2021.03.013. Epub 2021 May 22.
9
GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.).
J Integr Plant Biol. 2021 Jun;63(6):1054-1064. doi: 10.1111/jipb.13110.
10
The cloning and CRISPR/Cas9-mediated mutagenesis of a male sterility gene MS1 of soybean.
Plant Biotechnol J. 2021 Jun;19(6):1098-1100. doi: 10.1111/pbi.13601. Epub 2021 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验