Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany.
Tübingen Structural Microscopy, University of Tübingen, Tübingen, Germany.
Appl Environ Microbiol. 2023 Jul 26;89(7):e0057523. doi: 10.1128/aem.00575-23. Epub 2023 Jun 13.
This study is a continuation by the Environmental Biotechnology Group of the University of Tübingen in memoriam to Reinhard Wirth, who initiated the work on Mth60 fimbriae at the University of Regensburg. Growth in biofilms or biofilm-like structures is the prevailing lifestyle for most microbes in nature. The first crucial step to initiate biofilms is the adherence of microbes to biotic and abiotic surfaces. Therefore, it is crucial to elucidate the initial step of biofilm formation, which is generally established through cell-surface structures (i.e., cell appendages), such as fimbriae or pili, that adhere to biotic and abiotic surfaces. The Mth60 fimbriae of Methanothermobacter thermautotrophicus ΔH are one of only a few known archaeal cell appendages that do not assemble via the type IV pili assembly mechanism. Here, we report the constitutive expression of Mth60 fimbria-encoding genes from a shuttle-vector construct and the deletion of the Mth60 fimbria-encoding genes from the genomic DNA of ΔH. For this, we expanded our system for genetic modification of ΔH using an allelic-exchange method. While overexpression of the respective genes increased the number of Mth60 fimbriae, deletion of the Mth60 fimbria-encoding genes led to a loss of Mth60 fimbriae in planktonic cells of ΔH compared to the wild-type strain. This, either increased or decreased, number of Mth60 fimbriae correlated with a significant increase or decrease of biotic cell-cell connections in the respective ΔH strains compared to the wild-type strain. spp. have been studied for the biochemistry of hydrogenotrophic methanogenesis for many years. However, a detailed investigation of certain aspects, such as regulatory processes, was impossible due to the lack of genetic tools. Here, we amend our genetic toolbox for ΔH with an allelic exchange method. We report the deletion of genes that encode the Mth60 fimbriae. Our findings provide the first genetic evidence of whether the expression of these genes underlies regulation and reveal a role of the Mth60 fimbriae in the formation of cell-cell connections of ΔH.
本研究是由图宾根大学环境生物技术组进行的,以纪念雷因哈德·沃斯(Reinhard Wirth),他在雷根斯堡大学发起了 Mth60 菌毛的研究工作。在自然界中,大多数微生物的主要生活方式是在生物膜或类似生物膜的结构中生长。生物膜形成的第一步是微生物附着在生物和非生物表面,这是启动生物膜的关键步骤。因此,阐明生物膜形成的初始步骤至关重要,该步骤通常通过细胞表面结构(即菌毛或纤毛等细胞附属物)来建立,这些结构附着在生物和非生物表面。产甲烷八叠球菌ΔH 的 Mth60 菌毛是少数已知的古菌细胞附属物之一,它们不是通过 IV 型菌毛组装机制组装的。在这里,我们报告了穿梭载体构建体中 Mth60 菌毛编码基因的组成型表达,以及从ΔH 的基因组 DNA 中删除 Mth60 菌毛编码基因。为此,我们使用等位基因交换方法扩展了我们对ΔH 的遗传修饰系统。虽然各基因的过表达增加了 Mth60 菌毛的数量,但与野生型菌株相比,ΔH 浮游细胞中 Mth60 菌毛编码基因的缺失导致 Mth60 菌毛的缺失。这种增加或减少的 Mth60 菌毛数量与相应ΔH 菌株中生物细胞-细胞连接的显著增加或减少相关。
多年来,人们一直在研究产甲烷菌 spp. 的产氢生物化学。然而,由于缺乏遗传工具,对某些方面(如调控过程)的详细研究是不可能的。在这里,我们使用等位基因交换方法为ΔH 补充了遗传工具包。我们报告了编码 Mth60 菌毛的基因的缺失。我们的发现提供了这些基因表达是否受调控的第一个遗传证据,并揭示了 Mth60 菌毛在ΔH 细胞-细胞连接形成中的作用。