Suppr超能文献

基于深度学习方法的近场微波散射公式

Near-Field Microwave Scattering Formulation by A Deep Learning Method.

作者信息

Shao Wenyi, Zhou Beibei

机构信息

Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA.

EMAI LLC, Laurel, MD 20723 USA.

出版信息

IEEE Trans Microw Theory Tech. 2022 Nov;70(11):5077-5084. doi: 10.1109/tmtt.2022.3184331. Epub 2022 Jun 29.

Abstract

A deep learning method is applied to modelling electromagnetic (EM) scattering for microwave breast imaging (MBI). The neural network (NN) accepts 2D dielectric breast maps at 3 GHz and produces scattered-field data on an antenna array composed of 24 transmitters and 24 receivers. The NN was trained by 18,000 synthetic digital breast phantoms generated by generative adversarial network (GAN), and the scattered-field data pre-calculated by method of moments (MOM). Validation was performed by comparing the 2,000 NN-produced datasets isolated from the training data with the data computed by MOM. Finally, data generated by NN and MOM were used for image reconstruction. The reconstruction demonstrated that errors caused by NN would not significantly affect the image result. But the computational speed of NN was nearly 10 times faster than the MOM, indicating that deep learning has the potential to be considered as a fast tool for EM scattering computation.

摘要

一种深度学习方法被应用于对微波乳腺成像(MBI)的电磁(EM)散射进行建模。神经网络(NN)接收3GHz下的二维介电乳腺图,并在由24个发射器和24个接收器组成的天线阵列上生成散射场数据。该神经网络由生成对抗网络(GAN)生成的18000个合成数字乳腺模型以及通过矩量法(MOM)预先计算的散射场数据进行训练。通过将从训练数据中分离出的2000个由神经网络生成的数据集与通过矩量法计算的数据进行比较来进行验证。最后,将神经网络和矩量法生成的数据用于图像重建。重建结果表明,神经网络引起的误差不会对图像结果产生显著影响。但神经网络的计算速度比矩量法快近10倍,这表明深度学习有潜力被视为一种用于电磁散射计算的快速工具。

相似文献

1
Near-Field Microwave Scattering Formulation by A Deep Learning Method.基于深度学习方法的近场微波散射公式
IEEE Trans Microw Theory Tech. 2022 Nov;70(11):5077-5084. doi: 10.1109/tmtt.2022.3184331. Epub 2022 Jun 29.
2
Dielectric Breast Phantoms by Generative Adversarial Network.基于生成对抗网络的介电乳房体模
IEEE Trans Antennas Propag. 2022 Aug;70(8):6256-6264. doi: 10.1109/tap.2021.3121149. Epub 2021 Oct 26.
3
Microwave Imaging by Deep Learning Network: Feasibility and Training Method.基于深度学习网络的微波成像:可行性与训练方法
IEEE Trans Antennas Propag. 2020 Jul;68(7):5626-5635. doi: 10.1109/tap.2020.2978952. Epub 2020 Mar 12.

引用本文的文献

本文引用的文献

1
Dielectric Breast Phantoms by Generative Adversarial Network.基于生成对抗网络的介电乳房体模
IEEE Trans Antennas Propag. 2022 Aug;70(8):6256-6264. doi: 10.1109/tap.2021.3121149. Epub 2021 Oct 26.
2
Microwave Imaging by Deep Learning Network: Feasibility and Training Method.基于深度学习网络的微波成像:可行性与训练方法
IEEE Trans Antennas Propag. 2020 Jul;68(7):5626-5635. doi: 10.1109/tap.2020.2978952. Epub 2020 Mar 12.
4
Microwave Breast Imaging: Clinical Advances and Remaining Challenges.微波乳腺成像:临床进展和遗留挑战。
IEEE Trans Biomed Eng. 2018 Nov;65(11):2580-2590. doi: 10.1109/TBME.2018.2809541. Epub 2018 Feb 26.
8
10
Laser surface estimation for microwave breast imaging systems.激光表面估计在微波乳房成像系统中的应用。
IEEE Trans Biomed Eng. 2011 May;58(5):1193-9. doi: 10.1109/TBME.2010.2098406. Epub 2010 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验