Suppr超能文献

利用数字图像分析作为参考,提高基于中红外光谱的肝脂肪变性定量准确性。

Enhancing the accuracy of mid-infrared spectroscopy-based liver steatosis quantification using digital image analysis as a reference.

机构信息

Pathology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain.

Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.

出版信息

Analyst. 2023 Jun 26;148(13):3097-3106. doi: 10.1039/d3an00324h.

Abstract

The assessment of liver steatosis is crucial in both hepatology and liver transplantation (LT) surgery. Steatosis can negatively impact the success of LT. Steatosis is a factor for excluding donated organs for LT, but the increasing demand for transplantable organs has led to the use of organs from marginal donors. The current standard for evaluating steatosis is a semi-quantitative grading based on the visual examination of a hematoxylin and eosin (H&E)-stained liver biopsy, but this method is time-consuming, subjective, and lacks reproducibility. Recent research has shown that infrared (IR) spectroscopy could be used as a real-time quantitative tool to assess steatosis during abdominal surgery. However, the development of IR-based methods has been hindered by the lack of appropriate quantitative reference values. In this study, we developed and validated digital image analysis methods for the quantitation of steatosis in H&E-stained liver sections using univariate and multivariate strategies including linear discriminant analysis (LDA), quadratic DA, logistic regression, partial least squares-DA (PLS-DA), and support vector machines. The analysis of 37 tissue samples with varying grades of steatosis demonstrates that digital image analysis provides accurate and reproducible reference values that improve the performance of IR spectroscopic models for steatosis quantification. A PLS model in the 1810-1052 cm region using first derivative ATR-FTIR spectra provided RMSECV = 0.99%. The gained improvement in accuracy critically enhances the applicability of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) to support an objective graft evaluation at the operation room, which might be especially relevant in cases of marginal liver donors to avoid unnecessary graft explantation.

摘要

肝脂肪变性的评估在肝脏病学和肝移植(LT)手术中都至关重要。脂肪变性会对 LT 的成功产生负面影响。脂肪变性是排除供 LT 使用的器官的一个因素,但对可移植器官的需求不断增加,导致使用边缘供体的器官。目前评估脂肪变性的标准是基于对苏木精和伊红(H&E)染色的肝活检进行半定量分级,但这种方法既耗时、主观,又缺乏可重复性。最近的研究表明,红外(IR)光谱可以用作实时定量工具,在腹部手术中评估脂肪变性。然而,IR 基方法的发展受到缺乏适当的定量参考值的阻碍。在这项研究中,我们使用单变量和多变量策略(包括线性判别分析(LDA)、二次 DA、逻辑回归、偏最小二乘-DA(PLS-DA)和支持向量机)开发并验证了用于量化 H&E 染色肝切片中脂肪变性的数字图像分析方法。对 37 个具有不同脂肪变性程度的组织样本的分析表明,数字图像分析提供了准确且可重复的参考值,提高了用于脂肪变性定量的 IR 光谱模型的性能。在 1810-1052cm 区域使用一阶导数 ATR-FTIR 光谱的 PLS 模型提供了 RMSECV=0.99%。精度的显著提高极大地增强了衰减全反射-傅里叶变换红外(ATR-FTIR)在手术室中支持客观移植物评估的适用性,这在边缘供体肝脏的情况下尤其重要,以避免不必要的移植物切除。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验