CNRS, Laboratoire de Neurosciences Cognitives, Aix Marseille Université, Marseille, France.
Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) du CIUSSS de la Capitale Nationale, Quebec City, Quebec, Canada.
J Neurophysiol. 2023 Jul 1;130(1):155-167. doi: 10.1152/jn.00406.2022. Epub 2023 Jun 14.
A few years after their bilateral vestibular loss, patients usually show a motor repertoire that is almost back to normal. This recovery is thought to involve an upregulation of the visual and proprioceptive information that compensates for the lack of vestibular information. Here, we investigated whether plantar tactile inputs, which provide body information relative to the ground and to the Earth vertical, contribute to this compensation. More specifically, we tested the hypothesis that somatosensory cortex response to electric stimulation of the plantar sole in standing adults will be greater in humans ( = 10) with bilateral vestibular hypofunction (VH) than in an age-matched healthy group ( = 10). Showing significantly greater somatosensory evoked potentials (i.e., PN) in VH than in control subjects, the electroencephalographic recordings supported this hypothesis. Furthermore, we found evidence that increasing the differential pressure between both feet, by adding a 1-kg mass at each pendant wrist, enhanced the internal representation of body orientation and motion relative to a gravitational reference frame. The large decrease in alpha power in the right posterior parietal cortex (and not in the left) is in line with this assumption. Finally, behavioral analyses showed that trunk oscillations were smaller than head oscillations in VH and showed a reverse pattern for healthy participants. These findings are consistent with a tactile-based postural control strategy in the absence of vestibular input and a vestibular-based control strategy in healthy participants where the head serves as a reference for balance control. Somatosensory cortex excitability is greater in participants with bilateral vestibular hypofunction than in age-matched healthy humans. To control balance, healthy humans "locked" the head whereas participants with vestibular hypofunction "locked" their pelvis. For participants with vestibular hypofunction, increasing loading/unloading of the feet enhances the internal representation of body state in the posterior parietal cortex.
几年后,双侧前庭功能丧失的患者通常会表现出几乎完全恢复正常的运动模式。这种恢复被认为涉及到视觉和本体感觉信息的上调,以弥补前庭信息的缺失。在这里,我们研究了足底触觉输入是否有助于这种代偿,足底触觉输入提供了与地面和地球垂直相关的身体信息。更具体地说,我们测试了这样一个假设,即站立成年人足底电刺激引起的躯体感觉皮层反应在双侧前庭功能低下(VH)患者中(n=10)会大于年龄匹配的健康对照组(n=10)。脑电图记录显示 VH 组的体感诱发电位(即 PN)明显大于对照组,这一假设得到了支持。此外,我们发现,通过在每个悬垂手腕上增加 1 公斤的重量,增加双脚之间的压差,可以增强身体相对于重力参考系的方向和运动的内部表示。右后顶叶皮层(而不是左后顶叶皮层)的α功率大幅下降,这与这一假设一致。最后,行为分析表明,VH 组躯干摆动幅度小于头部摆动幅度,而健康组参与者则相反。这些发现与在缺乏前庭输入的情况下基于触觉的姿势控制策略以及健康参与者基于前庭的控制策略一致,在后者中头部是平衡控制的参考。双侧前庭功能低下患者的躯体感觉皮层兴奋性高于年龄匹配的健康人。为了控制平衡,健康人“锁定”头部,而前庭功能低下患者则“锁定”骨盆。对于前庭功能低下的患者,增加双脚的负载/卸载可以增强后顶叶皮层对身体状态的内部表示。