School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.
Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore.
Acc Chem Res. 2023 Jul 4;56(13):1766-1779. doi: 10.1021/acs.accounts.3c00122. Epub 2023 Jun 14.
Development of multifunctional nanoparticles (NPs) with desired properties is a significant topic in the field of nanotechnology and has been anticipated to revolutionize cancer diagnosis and treatment modalities. The surface character is one of the most important parameters of NPs that can directly affect their fate, bioavailability, and final theranostic outcomes and thus should be carefully tuned to maximize the diagnosis and treatment effects while minimizing unwanted side effects. Surface engineered NPs have utilized various surface functionality types and approaches to meet the requirements of cancer therapy and imaging. Despite the various strategies, these surface modifications generally serve similar purposes, namely, introducing therapeutic/imaging modules, improving stability and circulation, enhancing targeting ability, and achieving controlled functions. These surface engineered NPs hence could be applied in various cancer diagnosis and treatment scenarios and continuously contribute to the clinical translation of the next-generation NP-based platforms toward cancer theranostics.In this Account, we present recent advances and research efforts on the development of NP surface engineering toward cancer theranostics. First, we summarize the general strategies for NP surface engineering. Various types of surface functionalities have been applied including inorganic material-based functionality, organic material-based functionality like small molecules, polymers, nucleic acids, peptides, proteins, carbohydrates, antibodies, etc., and biomembrane-based functionality. These surface modifications can be realized by prefabrication or postfabrication functionalization, driven by covalent conjugations or noncovalent interactions. Second, we highlight the general aims of these different NPs surface functionalities. Different therapeutic and diagnostic modules, such as nanozymes, antibodies, and imaging contrast agents, have been modified on the surface of NPs to achieve theranostic function. Surface modification also can improve stability and circulation of NPs by protecting the NPs from immune recognition and clearance. In addition, to achieve targeted therapy and imaging, various targeting moieties have been attached on the NP surface to enhance active targeting ability to tissues or cells of interest. Furthermore, the NP surfaces can be tailored to achieve controlled functions which only respond to specific internal (e.g., pH, thermal, redox, enzyme, hypoxia) or external (e.g., light, ultrasound) triggers at the precise action sites. Finally, we present our perspective on the remaining challenges and future developments in this significant and rapidly evolving field. We hope this Account can offer an insightful overlook on the recent progress and an illuminating prospect on the advanced strategies, promoting more attention in this area and adoption by more scientists in various research fields, accelerating the development of NP surface engineering with a solid foundation and broad cancer theranostics applications.
多功能纳米粒子(NPs)的开发具有所需的特性是纳米技术领域的一个重要课题,预计将彻底改变癌症的诊断和治疗方式。表面特性是 NPs 的最重要参数之一,它可以直接影响它们的命运、生物利用度和最终的治疗效果,因此应该仔细调整以最大限度地提高诊断和治疗效果,同时最小化不必要的副作用。表面工程 NPs 利用了各种表面功能类型和方法来满足癌症治疗和成像的要求。尽管有各种策略,但这些表面修饰通常具有相似的目的,即引入治疗/成像模块、提高稳定性和循环、增强靶向能力以及实现可控功能。这些表面工程 NPs 因此可以应用于各种癌症诊断和治疗场景,并为基于下一代 NP 的平台向癌症治疗学的临床转化不断做出贡献。在本报告中,我们介绍了在癌症治疗学中开发 NP 表面工程的最新进展和研究成果。首先,我们总结了 NP 表面工程的一般策略。已经应用了各种类型的表面功能,包括基于无机材料的功能、基于小分子的有机材料功能、聚合物、核酸、肽、蛋白质、碳水化合物、抗体等,以及基于生物膜的功能。这些表面修饰可以通过预构建或后构建功能化来实现,驱动力是共价键合或非共价相互作用。其次,我们强调了这些不同 NPs 表面功能的一般目标。不同的治疗和诊断模块,如纳米酶、抗体和成像对比剂,已经被修饰在 NPs 的表面上,以实现治疗学功能。表面修饰还可以通过保护 NPs 免受免疫识别和清除来提高 NPs 的稳定性和循环。此外,为了实现靶向治疗和成像,可以将各种靶向基团附着在 NP 表面上,以增强对感兴趣的组织或细胞的主动靶向能力。此外,可以对 NP 表面进行定制,以实现仅对特定内部(例如,pH、热、氧化还原、酶、缺氧)或外部(例如,光、超声)触发在精确作用部位做出响应的受控功能。最后,我们提出了对这个重要且快速发展的领域中剩余挑战和未来发展的看法。我们希望本报告能为您提供对近期进展的深入了解,并为先进策略提供一个有启发性的展望,以促进该领域的更多关注和更多来自各个研究领域的科学家的采用,为具有坚实基础和广泛癌症治疗学应用的 NP 表面工程的发展提供加速。
Acc Chem Res. 2023-7-4
Adv Drug Deliv Rev. 2012-9-6
Curr Med Chem. 2018
Acc Chem Res. 2019-5-28
Acta Biomater. 2020-1-15
Acc Chem Res. 2011-5-6
Nanomaterials (Basel). 2025-8-15
Front Bioeng Biotechnol. 2025-5-1
J Neural Eng. 2024-12-20