Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China.
Acc Chem Res. 2019 Sep 17;52(9):2415-2426. doi: 10.1021/acs.accounts.9b00167. Epub 2019 Aug 14.
Nanoparticles (NPs) have enormous potential to improve disease diagnosis and treatment due to their intrinsic electronic, optical, magnetic, mechanical, and physiological properties. To realize their full potential for nanomedicine, NPs must be biocompatible and targetable toward specific biomolecules to ensure selective sensing, imaging, and drug delivery in complex environments such as living cells, tissues, animals, and human bodies. In this Account, we summarize our efforts to impart specific biocompatibility and biorecognition functionality to NPs by developing strategies to integrate inorganic and organic NPs with functional DNA (fDNA), including aptamers, DNAzymes, and aptazymes to create fDNA-NPs. These hybrid NPs take advantage of fDNA's ability to either bind targets or catalyze reactions in the presence of targets selectively and utilize their unique physicochemical properties including small size, low immunogenicity, and ease of synthesis and chemical modification in comparison with other molecules such as antibodies. By integrating inorganic NPs such as gold NPs, quantum dots, and iron oxide nanoparticles with fDNA, we designed stimuli-responsive fDNA-NPs that exhibit target induced assembly and disassembly of NPs, resulting in a variety of colorimetric, fluorescent, and magnetic resonance imaging (MRI)-based sensors for diagnostic of a broad range of analytes. To impart both biocompatibility and selectivity on inorganic NPs for targeted bioimaging, we have demonstrated DNA-mediated surface functionalization, shape-controlled synthesis, and coordinative assembly of such NPs as specific bioprobes. A highlight is provided on the construction of fDNA-based nanoprobes with light-activatable sensing and imaging functions, which provides precise control of recognition properties of fDNA with high spatiotemporal resolution. To explore the potential of organic NPs for biosensing applications, we have developed an enzyme-responsive fDNA-liposome as a universal sensing platform compatible with diverse biological targets as well as different detection methods including fluorescence, MRI, or temperature, making possible point-of-care diagnostics. To expand the application regime of organic NPs, we collaborated with the Zimmerman group to prepare single-chain block copolymer-based NPs and incorporated it with a variety of functions, including monovalent DNA for assembly, tunable surface chemistry for cellular imaging, and coordinative Cu(II) sites for catalyzing intracellular click reactions, demonstrating the potential of using organic NPs to create promising fDNA-NP systems with programmable functionalities. Furthermore, we survey our recent endeavor in integration of cell-specific aptamers with different NPs for targeted drug delivery, showing that introducing stimuli-responsive properties into NPs that target tumor microenvironments would enable safer and more effective therapy for cancers. Finally, current challenges and future perspectives in fDNA-mediated engineering of NPs for biomedical applications are discussed.
由于具有内在的电子、光学、磁、机械和生理特性,纳米粒子 (NPs) 具有极大的改善疾病诊断和治疗的潜力。为了充分发挥纳米医学的潜力,NPs 必须具有生物相容性和靶向特定生物分子的能力,以确保在活细胞、组织、动物和人体等复杂环境中进行选择性传感、成像和药物输送。在本报告中,我们总结了通过开发将无机和有机 NPs 与功能 DNA (fDNA) 整合的策略,为 NPs 赋予特定的生物相容性和生物识别功能的努力,包括适体、DNA 酶和适体酶以创建 fDNA-NPs。这些杂交 NPs 利用 fDNA 在存在靶标时选择性结合靶标或催化反应的能力,并利用其独特的物理化学性质,包括与抗体等其他分子相比,尺寸小、免疫原性低以及易于合成和化学修饰。通过将金 NPs、量子点和氧化铁纳米粒子等无机 NPs 与 fDNA 集成,我们设计了对刺激响应的 fDNA-NPs,这些 NPs 可诱导 NPs 的组装和拆卸,从而为广泛的分析物的诊断提供了各种比色、荧光和磁共振成像 (MRI) 传感器。为了赋予靶向生物成像用无机 NPs 生物相容性和选择性,我们已经证明了 DNA 介导的表面功能化、形状控制合成和协调组装等 NPs 作为特定的生物探针。重点介绍了具有光激活传感和成像功能的基于 fDNA 的纳米探针的构建,该探针可实现对 fDNA 识别特性的高精度时空控制。为了探索有机 NPs 在生物传感应用中的潜力,我们开发了一种酶响应的 fDNA-脂质体作为通用传感平台,与各种生物靶标以及不同的检测方法(包括荧光、MRI 或温度)兼容,从而实现即时诊断。为了扩大有机 NPs 的应用范围,我们与 Zimmerman 小组合作制备了基于单链嵌段共聚物的 NPs,并将其与各种功能(包括用于组装的单价 DNA、用于细胞成像的可调表面化学和用于催化细胞内点击反应的配位 Cu(II) 位点)相结合,证明了使用有机 NPs 来创建具有可编程功能的有前途的 fDNA-NP 系统的潜力。此外,我们还调查了我们最近在将细胞特异性适体与不同的 NPs 整合用于靶向药物输送方面的努力,表明在针对肿瘤微环境的 NPs 中引入对刺激的响应特性将能够为癌症提供更安全、更有效的治疗。最后,讨论了 fDNA 介导的用于生物医学应用的 NPs 工程的当前挑战和未来展望。
Acc Chem Res. 2011-6-7
Curr Med Chem. 2018
Adv Drug Deliv Rev. 2012-9-6
J Nanobiotechnology. 2025-4-23
Int J Mol Sci. 2024-3-8
Angew Chem Int Ed Engl. 2024-4-15
Med Rev (2021). 2023-9-20
Curr Opin Colloid Interface Sci. 2018-11
Adv Mater. 2018-10-1
Proc Natl Acad Sci U S A. 2018-4-9
J Am Chem Soc. 2018-1-6
Nat Biomed Eng. 2017
J Am Chem Soc. 2017-9-21
Angew Chem Int Ed Engl. 2017-5-4
Curr Opin Biotechnol. 2017-6