Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
J Arthroplasty. 2023 Oct;38(10):1959-1966. doi: 10.1016/j.arth.2023.06.002. Epub 2023 Jun 12.
The rates of blood transfusion following primary and revision total hip arthroplasty (THA) remain as high as 9% and 18%, respectively, contributing to patient morbidity and healthcare costs. Existing predictive tools are limited to specific populations, thereby diminishing their clinical applicability. This study aimed to externally validate our previous institutionally developed machine learning (ML) algorithms to predict the risk of postoperative blood transfusion following primary and revision THA using national inpatient data.
Five ML algorithms were trained and validated using data from 101,266 primary THA and 8,594 revision THA patients from a large national database to predict postoperative transfusion risk after primary and revision THA. Models were assessed and compared based on discrimination, calibration, and decision curve analysis.
The most important predictors of transfusion following primary and revision THA were preoperative hematocrit (<39.4%) and operation time (>157 minutes), respectively. All ML models demonstrated excellent discrimination (area under the curve (AUC) >0.8) in primary and revision THA patients, with artificial neural network (AUC = 0.84, slope = 1.11, intercept = -0.04, Brier score = 0.04), and elastic-net-penalized logistic regression (AUC = 0.85, slope = 1.08, intercept = -0.01, and Brier score = 0.12) performing best, respectively. On decision curve analysis, all 5 models demonstrated a higher net benefit than the conventional strategy of intervening for all or no patients in both patient cohorts.
This study successfully validated our previous institutionally developed ML algorithms for the prediction of blood transfusion following primary and revision THA. Our findings highlight the potential generalizability of predictive ML tools developed using nationally representative data in THA patients.
初次全髋关节置换术(THA)和翻修 THA 术后输血率分别高达 9%和 18%,这导致患者发病率和医疗保健成本增加。现有的预测工具仅限于特定人群,从而降低了其临床适用性。本研究旨在使用全国住院患者数据,对外验证我们之前机构开发的用于预测初次和翻修 THA 术后输血风险的机器学习(ML)算法。
使用来自大型全国数据库的 101266 例初次 THA 和 8594 例翻修 THA 患者的数据,训练和验证了 5 种 ML 算法,以预测初次和翻修 THA 术后输血风险。根据判别、校准和决策曲线分析对模型进行评估和比较。
初次和翻修 THA 术后输血的最重要预测因素分别为术前血细胞比容(<39.4%)和手术时间(>157 分钟)。所有 ML 模型在初次和翻修 THA 患者中均表现出出色的判别能力(曲线下面积(AUC)>0.8),其中人工神经网络(AUC=0.84,斜率=1.11,截距=-0.04,Brier 评分=0.04)和弹性网惩罚逻辑回归(AUC=0.85,斜率=1.08,截距=-0.01,Brier 评分=0.12)的表现最佳。在决策曲线分析中,在这两个患者队列中,与对所有或无患者进行干预的传统策略相比,所有 5 种模型均显示出更高的净收益。
本研究成功验证了我们之前机构开发的用于预测初次和翻修 THA 术后输血的 ML 算法。我们的研究结果突出了使用具有全国代表性数据开发的预测性 ML 工具在 THA 患者中的潜在通用性。