Suppr超能文献

预测初次全膝关节置换术后30天再次手术情况:机器学习模型优于美国外科医师学会风险计算器。

Predicting 30-day reoperation following primary total knee arthroplasty: machine learning model outperforms the ACS risk calculator.

作者信息

Chen Tony Lin-Wei, Buddhiraju Anirudh, Bacevich Blake M, Seo Henry Hojoon, Shimizu Michelle Riyo, Kwon Young-Min

机构信息

Bioengineering Lab, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA.

Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Med Biol Eng Comput. 2025 Apr;63(4):1131-1141. doi: 10.1007/s11517-024-03258-x. Epub 2024 Dec 9.

Abstract

The ACS risk calculator (ARC) has proven less effective in predicting patient-specific risk of early reoperation after primary total knee arthroplasty (TKA), compromising care quality and cost efficiency. This study compared the performance of a machine learning (ML) model and ARC in predicting 30-day reoperation after primary TKA using a national-scale dataset. Data of 366,151 TKAs were acquired from the ACS-NSQIP database. A random forest model was derived using ARC build-in parameters from the training dataset via techniques of hyperparameter optimization and cross-validation. The predictive performance of random forest and ARC was evaluated by metrics of discrimination, calibration, and clinical utility using the testing dataset. The ML model demonstrated good discrimination and calibration (AUC: 0.72, slope: 1.18, intercept: - 0.14, Brier score: 0.012), outperforming ARC in all metrics (AUC: 0.51, slope: - 0.01, intercept: 0.01, Brier score: 0.135) including clinical utility measured by decision curve analyses. Age (> 67 years) and BMI (> 34 kg/m) were the important predictors of reoperation. This study suggests the superiority of ML models in identifying individualized 30-day reoperation risk following TKA. ML models may be an adjunct prediction tool in enhancing patient-specific risk stratification and postoperative care management.

摘要

美国外科医师学会风险计算器(ARC)已被证明在预测初次全膝关节置换术(TKA)后患者特定的早期再次手术风险方面效果较差,这会影响护理质量和成本效益。本研究使用全国规模的数据集,比较了机器学习(ML)模型和ARC在预测初次TKA后30天再次手术方面的性能。从美国外科医师学会国家外科质量改进计划(ACS-NSQIP)数据库中获取了366,151例TKA的数据。通过超参数优化和交叉验证技术,使用训练数据集中ARC的内置参数导出了一个随机森林模型。使用测试数据集,通过区分度、校准度和临床效用指标评估随机森林和ARC的预测性能。ML模型显示出良好的区分度和校准度(曲线下面积[AUC]:0.72,斜率:1.18,截距:-0.14,布里尔评分:0.012),在所有指标上均优于ARC(AUC:0.51,斜率:-0.01,截距:0.01,布里尔评分:0.135),包括通过决策曲线分析衡量的临床效用。年龄(>67岁)和体重指数(BMI,>34kg/m²)是再次手术的重要预测因素。本研究表明ML模型在识别TKA术后个体化30天再次手术风险方面具有优越性。ML模型可能是一种辅助预测工具,可用于加强患者特定的风险分层和术后护理管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验